
1

Table of Contents
1. Introduction
1.1
2. General overview
1.2

1. Setup
1.2.1
2. Options
1.2.2
3. Bundling
1.2.3
4. Tooling
1.2.4

3. Syntax
1.3
1. Formatting
1.3.1
2. Imports
1.3.2
3. Entries
1.3.3
4. Types
1.3.4

1. Any
1.3.4.1
2. Void
1.3.4.2
3. Boolean
1.3.4.3
4. Number
1.3.4.4
5. HugeInt
1.3.4.5
6. Text
1.3.4.6
7. Method
1.3.4.7
8. List
1.3.4.8
9. Scope
1.3.4.9

10. Error
1.3.4.10
11. Chunk
1.3.4.11

5. Flow control
1.3.5
6. Loops
1.3.6

4. Libraries
1.4
1. async
1.4.1
2. bridge
1.4.2
3. color
1.4.3
4. console
1.4.4
5. curses
1.4.5
6. enigma
1.4.6
7. failure
1.4.7
8. file
1.4.8
9. http
1.4.9

10. math
1.4.10
11. recode
1.4.11
12. sdk
1.4.12
13. smtp
1.4.13
14. system
1.4.14
15. time
1.4.15
16. type._
1.4.16

1. Void
1.4.16.1
2. Boolean
1.4.16.2
3. Number
1.4.16.3
4. HugeInt
1.4.16.4
5. Text
1.4.16.5
6. Method
1.4.16.6
7. List
1.4.16.7
8. Scope
1.4.16.8
9. Error
1.4.16.9

10. Chunk
1.4.16.10
17. extra._
1.4.17

1. Date
1.4.17.1
2. Duration
1.4.17.2
3. Fuzzy
1.4.17.3
4. HashMap
1.4.17.4
5. Logger
1.4.17.5
6. Memo
1.4.17.6
7. MouseEvent
1.4.17.7
8. Opaque
1.4.17.8

2

9. Option
1.4.17.9
10. Param
1.4.17.10
11. Sound
1.4.17.11
12. Storable
1.4.17.12

18. Embedded commands
1.4.18

Introduction

3

Introduction
FatScript logo

Hello World

_ <- fat.std

console.log('Hello World')

Quick Start

Jump straight into the docs:

General overview
Language syntax
Standard libraries

Fry Interpreter

For local execution, use the fry interpreter. It's free and open source! You can find the code, examples, and more on our
GitLab repository.

For details on its installation and usage, refer to the setup section.

Web Playground

For quick and convenient testing, run your code directly in the FatScript Playground. The playground features a web-based
REPL with an intuitive interface that allows you to load scripts from a file, facilitating swift experimentation.

Tutorials

Dive into our immersive tutorials, behind-the-scenes insights, and surrounding topics in the FatScript YouTube channel.

PDF Download

FatScript v4.0.0 (current)
FatScript v3.4.0 (legacy)
FatScript v2.6.0 (legacy)
FatScript v1.3.5 (legacy)

Donations

Did you find FatScript useful and would like to say thanks?

Buy me a coffee

License

GPLv3 © 2022-2025 Antonio Prates

fatscript.org

Published on Sun Jan 19 2025 21:24:40 GMT+0000 (Greenwich Mean Time)

https://gitlab.com/fatscript/fry
https://fatscript.org/playground
https://www.youtube.com/@fatscript
clbr://internal.invalid/pdf/fatscript_v4_en.pdf
clbr://internal.invalid/pdf/fatscript_v3_en.pdf
clbr://internal.invalid/pdf/fatscript_v2_en.pdf
clbr://internal.invalid/pdf/fatscript_v1_en.pdf
https://www.buymeacoffee.com/aprates
clbr://internal.invalid/LICENSE
https://fatscript.org/

General overview

4

General overview
FatScript is a lightweight, interpreted programming language designed for building console-based applications. It emphasizes
simplicity, ease of use, and functional programming concepts.

But, wait...

FatScript, a lightweight programming language?

Yes, there's something odd about that statement... but please let me explain.

The expression "syntactic sugar" refers to features that make code easier to write by hiding underlying complexity. And, as with
consuming too much sugar... there can be consequences: fatness. Which, in this sense, it's a good thing - a lot of weight in few
lines of code.

That said, FatScript is still a relatively new language, and although it's designed to be simple and intuitive, it may not be the
best fit for all tasks, especially when it comes to high-performance computing or extremely complex workloads. However,
despite its name, FatScript's interpreter is tiny (lightweight), with a near-zero startup cost and benchmarking shows it
performing comparably to languages like Python or JavaScript.

So while calling it "lightweight" might be debatable, the language runtime is not inherently bloated and maintains an efficient
profile in practice for most use cases.

Key Concepts

Automatic memory management through garbage collection (GC)
Symbolic character combinations for a minimalistic syntax
REPL (Read-Eval-Print Loop) for quick expression testing
Support for type system, inheritance, and sub-typing via aliases
Support for immutable programming and passable methods (as values)
Keep it simple and intuitive, whenever possible

Free and open-source

fatscript/fry is an open-source project that encourages knowledge sharing and collaboration. We welcome developers to
contribute to the project and help us improve it over time.

Contents of this section

Setup: how to install the FatScript interpreter
Options: how to customize the runtime
Bundling: how to pack a FatScript application
Tooling: overview of a few extra tools and resources

https://www.youtube.com/watch?v=EH7FtBdb3pE
https://gitlab.com/fatscript/fry/blob/main/CONTRIBUTING.md

Setup

5

Setup
To start "frying" your fat code, you'll need an interpreter for the FatScript programming language.

fry, The FatScript Interpreter

fry is a free interpreter and runtime environment for FatScript. You can install it on your machine using the following
instructions.

Installation

fry is designed for GNU/Linux, but it might also work on other operating systems.

For Arch-based distributions, install via fatscript-fry AUR package.

For other distributions, try the auto-install script:

curl -sSL https://gitlab.com/fatscript/fry/raw/main/get_fry.sh -o get_fry.sh;

bash get_fry.sh || sudo bash get_fry.sh

Or, to install fry manually:

Clone the repository:

git clone --recursive https://gitlab.com/fatscript/fry.git

Then, run the installation script:

cd fry

./install.sh

the manual installation may copy the fry binary to the $HOME/.local/bin folder, alternatively use sudo to install it to
/usr/local/bin/

Verify that fry is installed by running:

fry --version

Dependencies

If the installation fails, you may be missing some dependencies. fry requires git, gcc and libcurl to build. For example,
to install these dependencies on Debian/Ubuntu, run:

apt update

apt install git gcc libcurl4-openssl-dev

Back-end for text input

linenoise is a lightweight dependency and an alternative to readline, maintained as a submodule. If it was not included
during the initial git clone operation, you can rectify this with the following commands:

git submodule init

git submodule update

If you prefer to link against readline, just ensure it is installed by running:

apt install libreadline-dev

OS Support

fry is primarily designed for GNU/Linux, but it's also accessible on other operating systems:

Android

If you're on Android, you can install fry via Termux. Just install the required dependencies like so:

https://gitlab.com/fatscript/fry
https://aur.archlinux.org/packages/fatscript-fry
https://termux.dev/

Setup

6

pkg install git clang

Then you can follow the standard installation instructions for fry.

ChromeOS

If you're using ChromeOS, you can enable Linux support by following the instructions here.

MacOS

If you're using MacOS, you'll need to have Command Line Tools installed.

iOS

If you're using iOS, you may use fry via iSH. First, install the required dependencies:

apk add bash gcc libc-dev curl-dev

Then, according to this thread, configure git to work properly, like so:

wget https://dl-cdn.alpinelinux.org/alpine/v3.11/main/x86/git-2.24.4-r0.apk

apk add ./git-2.24.4-r0.apk

git config --global pack.threads "1"

Windows

If you're using Windows, you can use fry via Windows Subsystem for Linux (WSL).

Docker image

fry is also available as a docker image:

docker run --rm -it fatscript/fry

To execute a FatScript file with docker, use the following command:

docker run --rm -it -v ~/project:/app fatscript/fry prog.fat

replace ~/project with the path to your FatScript file

Troubleshooting

If you encounter any issues or bugs while using fry, please open an issue.

https://chromeos.dev/en/linux/setup
https://developer.apple.com/forums/thread/670389
https://github.com/ish-app/ish/
https://github.com/ish-app/ish/issues/943
https://learn.microsoft.com/en/windows/wsl/install
https://hub.docker.com/r/fatscript/fry/tags
https://gitlab.com/fatscript/fry/issues

Options

7

Options
With this breakdown of the available modes and parameters you will find out that fry has got several spices under the hood
for you to better season your runtime.

Command-line arguments

The CLI front-end offers some modes of operation:

fry [OPTIONS] read-eval-print-loop (REPL)
fry [OPTIONS] FILE [ARGS] execute a FatScript file
fry [OPTIONS] -b/-o OUT IN create a bundle
fry [OPTIONS] -f FILE... format FatScript source files

Here are the available option parameters:

-a, --ast print abstract syntax tree only
-b, --bundle save bundle to outfile
-c, --clock time and benchmark logs (toggle)
-d, --debug enable debug logs (implies -c)
-e, --error continue on error (toggle)
-f, --format indent FatScript source files
-h, --help show this help and exit
-i, --interactive enable REPL with file execution
-j, --jail restrict FS, network and sys calls
-k, --stack # set stack depth (frame count)
-m, --meta show info about this build
-n, --nodes # set memory limit (node count)
-o, --obfuscate encode bundle (implies -b)
-p, --probe perform static analysis (dry run)
-s, --save store REPL session to repl.fat
-v, --version show version number and exit
-w, --warranty show disclaimer and exit

the -e option is auto-enabled with REPL and probe modes

combining -p with -f sends formatted result to stdout

combining -p with -b prints code analysis when bundling

Memory management

fry manages memory automatically without pre-reservation. You can limit memory usage by specifying the number of nodes
with CLI options:

-n <count> for an exact node count
-n <count>k for kilonodes, count * 1000
-n <count>m for meganodes, count * 1000000

For example, fry -n 5k mySweetProgram.fat restricts the app to 5000 nodes.

The garbage collector (GC) runs automatically when there are 256 nodes left before the final memory limit is reached (GC
premonition, see parameters.h). You can also invoke the GC at any time by calling the runGC method of SDK lib from
the main thread.

Bytes estimate (x64)

Each node on a 64-bit platform uses approximately ~200 bytes. The actual node size depends on the data it holds. For example,
the default limit is 10 million nodes, your program can use up to 2 GB of RAM when reaching the default limit.

Use the -c or --clock option to print the execution stats to have a better understanding of how your program is behaving in
practice.

Runtime verification

Options

8

There are two embedded commands for checking memory usage at runtime:

$nodesUsage currently allocated nodes
$bytesUsage maximum allocated bytes (ru_maxrss)

Stack size

The maximum stack depth is defined in parameters.h, however you may be able to customize the stack size up to a certain
point using CLI options:

-k <count> for an exact frame count
-k <count>k for kiloframes, count * 1000

Run commands file

On bootstrap, fry looks for a .fryrc file on the same path of the program file and, if not present, also on the current
directory. If found, it is executed as a "precook" phase to set up the environment for the program execution.

Memory management with .fryrc

You can use the .fryrc file to define the memory limit for your project without needing to specify it as a CLI argument. To
do this, you can use the setMem method provided by the SDK lib, like this:

_ <- fat.sdk

setMem(64000) # sets 64k nodes as memory limit

Bootstrap details

CLI options are applied first, except for the memory limit. During the precook phase, fry uses the default limit of 10 million
nodes, regardless of the CLI option. If you define a memory limit in the .fryrc file, that limit takes effect from that point on
and overrides the CLI option for the whole execution. If the .fryrc file does not set a memory limit, the CLI option takes
effect after the precook phase.

The precook scope is invisible by default. After the .fryrc file is executed, a fresh scope is provided for your program, which
allows you to test your code with a very low limit of nodes when using a .fryrc file without affecting the node count. This
also prevents the .fryrc namespace from clashing with your program's global scope. However, if you want to keep the
entries declared in .fryrc in the global scope for configuration purposes, you can call the embedded command
$keepDotFry somewhere in the .fryrc file.

Another possible use, other than setting up memory limit, is to pre-load common imports, for example the standard types:

$keepDotFry

_ <- fat.type._

Sandbox mode

Use the -j or --jail option to inhibit the following embedded commands:

write, remove, and mkDir - These commands modify the file system.
request - This command is used for making outbound HTTP requests.
send - This command is used for sending emails via SMTP.
loadDLL - This command loads an external library via dlopen.
shell, capture, fork, and kill - These commands are involved in starting or stopping arbitrary processes.

See also

Embedded commands
SDK library

Bundling

9

Bundling
Fry offers an integrated bundling tool for FatScript code.

Usage

To bundle your project into a single file starting from the entry point, execute:

fry -b sweet mySweetProject.fat

Subsequently, you can run your program:

./sweet

This process does the following:

Consolidates all imports, except for standard libraries and literal paths
Removes spaces and comments to enhance load times
Replaces any $break statements (debugger breakpoint) with ()
Adds a shebang to bundled code
Receives the execute attribute for file mode

Caveats

Imports are deduplicated and inlined based on their order of first appearance. As a result, the sequence in which you import
your files could play a role in the final bundled output. Though these considerations are usually inconsequential for small
projects, bundling larger projects may require additional organization. Always validate your bundled output.

Obfuscating

For optional obfuscation, use -o:

fry -o sweet mySweetProject.fat # creates the obfuscated bundle

./sweet # executes your program as usual

when distributing via public hosts, consider setting a custom key with a local .fryrc; Only the client should be privy to
this key to safeguard the source

Obfuscation leverages enigma algorithm for encryption, ensuring swift decoding. For optimal load times, prefer -b if
obfuscation isn't essential.

https://bash.cyberciti.biz/guide/Shebang

Tooling

10

Tooling
Here are a few hints that can enhance your coding experience with FatScript.

Static analysis

Use the probe mode to check the syntax and receive hints about your code:

fry -p mySweetProgram.fat

Debugger

A breakpoint, indicated by the command $break, serves as a debug tool by temporarily halting the program execution at a
designated location and loading the built-in debugging console. It provides an interactive environment for examining the
current state of the program by inspecting values in scope, evaluating expressions, and tracing program flow.

To activate breakpoints, it is necessary to run the program with interactive mode enabled:

fry -i mySweetProgram.fat

In FatScript, $break returns null, which can alter a return value if placed at the end of a block, due to the auto-return
feature. Be cautious with $break placement to avoid unintended effects on program functionality.

Package manager

chef is the official package manager for FatScript, designed for easy dependency management.

To install, clone the repository and build chef:

git clone https://gitlab.com/fatscript/chef.git

cd chef

fry -b $HOME/.local/bin/chef chef.fat

For usage instructions and more details, visit the chef repository.

Source code formatting

Built-in support

You can apply auto-indentation to your sources using the following command:

fry -f mySweetProgram.fat

Visual Studio Code Extension

To add code formatter support to VS Code, you can install the fatscript-formatter extension. Launch VS Code Quick Open
(Ctrl+P), paste the following command, and press enter:

ext install aprates.fatscript-formatter

fry needs to be installed on your system for this extension to work

Syntax highlighting

Visual Studio Code extension

To add FatScript syntax highlighting to VS Code, you can install the fatscript-syntax extension. Launch VS Code Quick Open
(Ctrl+P), paste the following command, and press enter:

ext install aprates.fatscript-syntax

You can also find and install these extensions from the VS Code Extension Marketplace.

Vim and Neovim plugin

https://gitlab.com/fatscript/chef
https://marketplace.visualstudio.com/items?itemName=aprates.fatscript-formatter
https://marketplace.visualstudio.com/items?itemName=aprates.fatscript-syntax

Tooling

11

To install FatScript's syntax highlighting for Vim and Neovim, check out the vim-syntax plugin.

For Neovim users, add the respective line to your configuration:

Using packer.nvim:

use { 'https://gitlab.com/fatscript/vim-syntax', as = 'fatscript' }

Using lazy.nvim:

{ 'https://gitlab.com/fatscript/vim-syntax', name = 'fatscript' }

Nano syntax file

To install FatScript's syntax highlighting for nano, follow these steps:

1. Download the fat.nanorc file from here.
2. Copy the fat.nanorc file to the nano system directory:

sudo cp fat.nanorc /usr/share/nano/

If the syntax highlighting does not get automatically enabled, you may need to explicitly enable it in your .nanorc file. Refer
to the instructions in the Arch Linux Wiki for more information.

After installing the syntax highlighting, you can also use the code formatter in nano with the following shortcut sequence:

Ctrl+T Execute; and then...
Ctrl+O Formatter

https://gitlab.com/fatscript/vim-syntax
https://gitlab.com/fatscript/fry/-/raw/main/extras/fat.nanorc?inline=false
https://wiki.archlinux.org/title/Nano#Syntax_highlighting

Syntax

12

Syntax
Essential aspects

Imports (<-)

console <- fat.console

Values (v)

Value names start with lowercase:

name = 'Mary'

age = 25

values are constants, unless initially declared with a tilde

Variables (~)

~ email = 'my@email.com'

~ isOnline = true

Lists ([])

list = [1, 2, 3]

list(0) # Outputs 1, read-only

list[0] # Outputs 1, read/write, in case list can be changed

Scopes ({})

scope = { key1 = 'value1', key2 = 'value2' }

scope.key1 # Outputs 'value1' (dot access)

scope('key1') # Outputs 'value1', read-only (call access)

scope['key1'] # Outputs 'value1', read/write, in case value can be changed

Types (T)

Type names start with uppercase:

Person = (name: Text, age: Number)

person = Person('Mary', 25)

Methods (->)

greeting = (name: Text): Text -> 'Hello, {name}'

console.log(greeting('World'))

methods are also considered values

Nullish coalescence (??)

maybeValue ?? fallback # use fallback if maybeValue is null/error

If-Else (? : _)

condition ? then : else # if condition is true, then do "then", otherwise "else"

Match cases (=>)

condition1 => result1

condition2 => result2

conditionN => resultN

_ => default # catch-all case

Syntax

13

Switch (>>)

value >> {

 match1 => result1

 match2 => result2

 matchN => resultN

 _ => default # catch-all case

}

Tap (<<)

expression << tapMethod

uses tapMethod only for it's effects on the value returned by expression

Loops (@)

condition @ loopBody # loop while the condition is true

1..10 @ n -> rangeMapper(n) # iterate over the range 1 to 10

list @ item -> listMapper(item) # iterate over list items

scope @ key -> scopeMapper(key) # iterate over scope keys

Procedures (<>)

~ users = [

 { name = 'Foo', age = 30 }

 { name = 'Bar', age = 28 }

]

userNames = List <> users @ -> _.name

userNames # Outputs ['Foo', 'Bar']

Deep dive

In the following pages, you will find information on the central aspects of writing FatScript code, using both the basic language
features as well as the advanced type system and standard libraries features.

Formatting: how to format FatScript code properly

Imports: how to import libraries into your code

Entries: understanding the concept of entries and scopes

Types: a guide to FatScript type system

Any - anything
Void - nothing
Boolean - primitive
Number - primitive
HugeInt - primitive
Text - primitive
Method - function or lambda
List - like array or stack
Scope - like object or dictionary
Error - yes, for errors
Chunk - binary data

Flow control: controlling the program execution with conditionals

Loops: making use of ranges, map-over and while loops

Formatting

14

Formatting
In FatScript, whitespace and indentation are irrelevant, yet they are very welcome to make the code more readable and easier to
understand.

Whitespace

A newline character (\n) indicates the end of an expression, except when:
the last token on the line is an operator
the first token of the next line is a non-unary operator
using parentheses to group expressions

Expressions can be on the same line if separated by comma (,) or semicolon (;)

Comments

Comments start with #, and are terminated by a newline:

a = 5 # this is a comment

Note

FatScript does not support multiline comments at the moment. Additionally, text literals may end up as a valid return value if
left as the last standing line, due to the auto-return feature. Therefore, it is recommended to stick to the single line comment
format.

See also

Source auto-formatter

Imports

15

Imports
Let's unravel the art of importing files and libraries in FatScript! Why? Well, because in this language you can import whenever
your heart desires, simply by using a left arrow <-.

Dot syntax

To use imports with dot syntax, project files and folders should neither start with a digit nor contain symbols.

you can specify any path you like by using literal paths

Named import

To import files, use the .fat extension for filenames (or no extension at all). However, omit the extension in the import
statement. Here's an example:

ref <- filename

if both x and x.fat files exist, the latter takes precedence

For importing files from folders:

ref1 <- folder.filename

ref2 <- folder.subfolder.filename

To import all files from a folder, use the dot-underscore syntax:

lib <- folder._

Please note: only files immediately inside the folder are included using the above syntax. To include files from subfolders,
explicitly mention them. Additionally, a "_.fat" file (or "_" file) inside a folder can override the dot-underscore import behavior.

slashes / can also be used as an alternative, such as ref <- folder/filename

Element access

Once imported, access elements using dot syntax:

ref1.element1

Element extraction

To extract specific elements from a named import or to avoid prepending the module name every time (e.g., lib.foo),
employ destructuring assignment:

{ foo, bar } = lib

Visibility

Named imports are resolved at the global scope, irrespective of where they are declared. This means even if you declare a
named import inside a function or a local scope, it will be globally accessible.

Local import

To import within the current scope, use:

_ <- filename

Local imports, unlike named imports, dump the file content directly into the current scope. Thus, an imported method can be
invoked as baz(arg) rather than ref.baz(arg).

While local imports are best suited for importing types into the global scope, they should be used with caution when importing
library content. Overusing local imports can lead to namespace pollution, which can make it more challenging to follow the
code, because it becomes less apparent where the methods come from.

Imports

16

Literal paths

With literal paths, you may use any filename or extension. However, note that those imports are not evaluated during bundling,
but at runtime. Here's an example:

ref <- '_folder/2nd-source.other'

You can also use smart texts as literal paths:

base = 'folder'

file = 'source.xyz'

ref <- '{base}/{file}'

Keep in mind that literal paths can make your code more complex, and those imports can only be dynamically resolved, so use
them sparingly.

Import deduplication

FatScript utilizes an "import once" strategy with an in-scope flag mechanism, automatically bypassing files that have already
been imported.

Pitfalls of import usage

1. Local imports within method: Importing directly within a method body re-evaluates the import on every invocation,
causing memory retention:

myMethod = -> {

 _ <- lib # potential memory leak

 ...

}

This behavior is not classified as a bug per se, but rather a consequence of design choices in FatScript's garbage
collection (GC) system. The GC's optimizations exclude nodes directly derived from source code, allowing them
to evade standard mark-and-sweep procedures. As a result, local imports within methods miss out on
deduplication, causing their nodes to remain resident until the program's end.

2. Selective local imports: Using destructuring assignment on local imports discards other members, but the whole
import is processed and bound to the extracted member context:

{ foo1 } = { _ <- lib } # lib is loaded and bound to foo1's context

...

{ foo2 } = { _ <- lib } # lib is loaded again, and bound to foo2

This pattern creates a closure. Using it for the same library results in repeated loads, increasing memory usage.
For better efficiency, consider importing the library once at the top level and referencing it directly or using
selective imports sparingly.

Best Practices

To avoid memory issues, follow these strategies:

Move imports to outer scope: Import libraries at a higher level to ensure single evaluation.
Use named imports: Prefer named imports to reuse code without redundancy.

Entries

17

Entries
Entries are key-value pairs that exist in the scope where they are declared.

Naming

Entry names (keys) cannot start with an uppercase letter, which is the distinction compared to types. Identifiers are case-
sensitive, so "frenchfries" and "frenchFries" would be considered different entries.

The recommended convention is to use camelCase for entries.

you may use an arbitrary name as key by using dynamic nomination

Declaration and assignment

In FatScript, you can declare entries by simply assigning a value:

isOnline: Boolean = true

age: Number = 25

name: Text = 'John'

Types can also be inferred from assignment:

isOnline = true # Boolean

age = 25 # Number

name = 'John' # Text

Immutable entries

In FatScript, declaring an entry defaults it to being immutable, meaning once assigned, its value cannot be changed. This
immutability ensures consistency throughout the program's execution:

fruit = 'banana'

fruit = 'apple' # raises an error because 'fruit' is immutable

Exception to the Rule

The immutability in FatScript applies to the binding of the entry, not to the contents of scopes. Even though an entry is
immutable, if it contains a scope, the content of that scope can be modified, either by adding new entries or by modifying
mutable entries within the scope:

s = { a = 1, b = 2 }

s.c = 3 # even though 's' is immutable it accepts the new value of 'c'

s # now { a = 1, b = 2, c = 3 }

This design choice offers flexibility with scope modifications. In contrast, lists enforce stricter immutability, preventing the
addition of new entries to immutable lists.

Scopes are always passed by reference. To modify a scope's content without altering its original reference, use the copy
method from the Scope prototype extension to create a duplicate.

Sealing Scopes

Starting with version 4.x.x, the Scope prototype extension introduces the seal method, allowing you to prevent further
modifications to a scope by sealing it. Once sealed, no new entries can be added to the scope, though existing entries can still
be modified (if mutable):

s = { ~ a = 1, b = 2 }

s.seal # seals the scope

s.c = 3 # raises an error: cannot add new members to a sealed scope

s.a = 42 # allowed: modifies an existing mutable entry

Mutable entries

Yes, you can declare mutable entries, also known as variables. To declare a mutable entry, use the tilde ~ operator:

Entries

18

~ fruit = 'banana'

fruit = 'apple' # ok

Note that even a mutable entry cannot immediately change its type, unless it's erased from the scope. To erase an entry, assign
null to it, and then redeclare it with a new type. Changing types is discouraged by the syntax and not recommended, but it is
possible:

~ color = 32 # creates color as a mutable Number entry

color = 'blue' # raises a TypeError because color is a Number

color = null # entry is erased

color = 'blue' # redefines color with a different type (Text)

you have to declare the entry as mutable again using tilde ~ when redefining after erasure if you want the next value to be
mutable

Dynamic entries

You can create entries with dynamic names using square brackets [ref]:

ref = 'popCorn' # text will be the name of the entry

options = { [ref] = 'is tasty' }

options[ref] # dynamic syntax: yields 'is tasty', with read and write access

options(ref) # get syntax: yields 'is tasty', but value is read-only

options.popCorn # dot syntax: yields 'is tasty', but has to follow naming rules

all dynamic declarations are mutable entries

This feature allows to dynamically define the names inside a scope and create entries with names that otherwise would not be
accepted by FatScript.

Dynamic entries can also use numeric references, however the reference is converted into text automatically, e.g.:

[5] = 'text stored in entry 5'

self['5'] # yields 'text stored in entry 5'

self[5] # yields 'text stored in entry 5'

Destructuring assignment

You can copy values of a scope into another scope like so:

_ <- fat.math

distance = (position: Scope/Number): Number -> {

 { x, y } = position # destructuring assignment into method scope

 sqrt(x ** 2 + y ** 2) # calculates distance between origin and (x, y)

}

distance({ x = 3, y = 5 }) # 5.83095189485

The same syntax works similarly for lists:

distance = (position: List/Number): Number -> {

 { x, y } = position # extracts first and second items to 'x' and 'y'

 sqrt(x ** 2 + y ** 2)

}

distance([3, 5]) # 5.83095189485

You can also use destructuring assignment to expose a certain method or property from a named import:

console <- fat.console

{ log } = console

log('Hello World')

using this syntax with imports, you can choose to bring to the current scope only the elements of the library that you are
interested in using, thus avoiding polluting the namespace with names that would otherwise have no use or could clash
with those of your own writing

JSON-like syntax

FatScript also supports JSON-like syntax for declaring entries:

Entries

19

"nothing": null, # Void entry - distinct behavior, see bellow

"isOnline": true, # Boolean entry

"age": 25, # Number entry

"name": "John", # Text entry

"tags": ["a", "b"], # List entry

"options": { "prop": "other" } # Scope entry

It's important to note that JSON-like declarations always create immutable entries, so you can't prepend them with the tilde ~
character to make them mutable.

Types

20

Types
Types are used in FatScript to combine data and behavior, acting as templates for creating new instances.

Naming

Type names are case-sensitive and must start with an uppercase letter.

The recommended convention for type identifiers is PascalCase.

Native Types

FatScript provides several native types:

Any - anything
Void - nothing
Boolean - primitive
Number - primitive
HugeInt - primitive
Text - primitive
Method - function or lambda
List - like array or stack
Scope - like object or dictionary
Error - yes, for errors
Chunk - binary data

However, you need to import the types package to access the prototype members for each type.

Additional Types

FatScript's native types are augmented with a collection of extra types that build upon the core functionalities of its native
types. Crafted in pure FatScript, these additional types cater to various advanced programming needs and facilitate common
design patterns.

Moreover, you will find domain-specific types embedded within libraries, such as Worker in the async library, FileInfo in
file, HttpRequest (among others) in http, CommandResult in system etc.

Custom Types

Besides using the types provided by the language or an external library, you may also create your own types, or extend existing
ones with new behaviors.

Declaration

To define a custom type in FatScript, you can use a simple assignment statement. The type definition can be wrapped in either
parentheses or curly brackets. Both syntaxes are valid and have the same effect. You may also optionally define default values
for the type's properties, as shown in the following example:

Type definition with default values

Car = (km: Number = 0, color: Text = 'white', optional = null)

Global Uniqueness

FatScript features a singular global meta-space, necessitating unique type names across your entire program and any included
libraries. Attempting to define a type that shares a name with an existing type, even if in a different scope, triggers an
AssignError. However, if the new definition is identical, it will simply be ignored.

To survey the types present in the global meta-space, the command _<-fat.std; sdk.getTypes; proves useful. This
function enumerates all defined types, and details their definition locations with source:line:column markers. This
feature helps navigating and understanding the structure of your code and its dependencies.

It is wise to steer clear of names already in use by fat.std library types when defining new types.

Types

21

While FatScript does not impose a strict naming protocol for library development, adopting a conflict-averse naming strategy is
recommended. A common practice involves prefixing type names with some unique identifier that reflects your library's name,
thereby reducing the likelihood of name clashes.

Usage

To create instances of a custom type, call the type name as if it were a method, optionally passing values for the properties:

Type usage from defaults

car = Car()

outputs: { km: Number = 0, color: Text = 'white' }

Type usage defaulting one of the properties

redCar = Car(color = 'red')

outputs: { km: Number = 0, color: Text = 'red' }

Type usage, fully qualified

oldCar1 = Car(color = 'blue', km = 38000)

overrides both values

Type usage, args using props sequence

oldCar2 = Car(41000, 'green')

overrides values using type definition order

By default, custom types return a scope of their properties. If you define an apply procedure, however, the type can return a
different value. For example, here's a custom type Sum with an apply procedure that returns the sum of its a and b properties:

Sum = (a: Number, b: Number, apply = <> a + b)

Sum(1, 2) # output: 3

note that apply procedures do have direct access to instance props

In this example, the output base type of apply is a number, not a scope. This also means that the original properties of the
custom type are lost during instantiation and cannot be accessed again.

Prototype members

Those are special kind of methods, stored inside the type definition:

TypeWithProtoMembers = {

 ~ a: Number

 ~ b: Number

 setA = (newA: Number) -> self.a = newA

 setB = (newB: Number) -> self.b = newB

 sum = (): Number -> self.a + self.b

}

In this example, setA, setB and sum are prototype members. Note that we needed to use self, which is a keyword that
provides a self reference to the instance (or method) scope, so that we could gain access to the props.

Checking types

If you're unsure about the type of an entry, you can simply check by comparing it with a type name:

place = 'restaurant'

place == Number # false

place == Text # true

alternatively, use the typeOf method from the SDK library to extract the type name

Anything can be compared with the reserved word Type which identifies if it refers to a type:

Number == Type # true

Type can also be used to specify that a method takes a type parameter:

combine = (t: Type, val: Any): Any -> ...

Types

22

Type alias

In FatScript, you can create subtypes by aliasing an existing type. This means that the new type will inherit all of the properties
of the base type. Here's an example:

_ <- fat.type.Text

Id = Text # creates an alias

Type aliases are hierarchical and can be used to classify values while still inheriting the same behavior. However, while the
alias is considered equal to the base type, instances of the new type are not considered equal to the base type.

To check if a value is an instance of a type alias or its base type, you can use the less-equal comparison operator <=. This
allows you to accept any type on the alias chain, down to the base type. Here's an example:

Id == Text # true, as Id is an alias of Text

x = Id(123) # id: Id = '123'

x == Text # false, however x is Id it's not Text

x == Id # true, as expected x is of type Id

x <= Text # true, as x is of Id which is an alias of Text

This feature allows for fine-grained matching on specific types, while still maintaining the flexibility to use different aliases for
the same underlying type.

limitation: it is not possible to create aliases for Any, Type or Method

Type constraints

In FatScript, you can declare type constraints for method parameters. When a method is called, the argument is automatically
checked against the type constraint. If the argument is not of the expected type or one of its subtypes, a TypeError is raised.

If the type constraint is a base type, any subtype of that type is also accepted as an argument. However, if the type constraint is
a subtype, only arguments that match the subtype are accepted. Here's an example:

generalist = (x: Text) -> x

restrictive = (x: Id) -> x

In this example, the generalist method accepts both Text and Id arguments, because Id is a subtype of Text. The
restrictive method only accepts Id arguments and not Text arguments, because Id is a subtype of Text, but not the
other way around.

It's important to emphasize that custom types are derived from Scope. In this context, Scope would be the generalist type for,
for instance, the custom type Car.

Mixin (advanced)

When defining a type, you can add the features of an existing type simply by mentioning it on the type definition. This is called
type inclusion or mixin.

For instance, to create a new type RentalCar with the properties of Car and an additional price property, you can write:

RentalCar = {

 # Includes

 Car

 # Additional prop

 price: Number

}

RentalCar(50) # { color: Text = 'white', km: Number = 0, price: Number = 50 }

If a property is not defined in the new type, it will inherit the default value from the included type. In the above example, the
color and km properties of Car are present in RentalCar, with their default values.

Inheriting prototype methods

Suppose we continue from the previous example of type TypeWithProtoMembers that has two properties a and b, and
three prototype methods setA, setB and sum. To create a new type WithMoreMembers that adds a property c, a method
setC and overrides the sum method, you can write:

Types

23

WithMoreMembers = {

 # Includes

 TypeWithProtoMembers

 # Props (instance parameters)

 ~ a: Number

 ~ b: Number

 ~ c: Number

 # Prototype members (methods)

 setC = (newC: Number) -> self.c = newC

 sum = (): Number -> self.a + self.b + self.c

}

redeclaring the props allows the new type to also accept arguments at instantiation time, e.g.: WithMoreMembers(1,
2, 3) sets a, b and c

When creating a new instance of WithMoreMembers, all four prototype methods setA, setB, setC and sum will be
available.

Note that if there is a redefinition of a property or method in the new type, the new definition takes precedence.

Type casting

In FatScript, the * symbol is used for type casting, allowing you to treat one data type as another without altering the
underlying data. This capability is especially useful for explicitly specifying the type or for treating values as compatible types,
for example:

time.format(Epoch * 1688257765448) # treats the number as a Unix Epoch value

type casting does not change the underlying implementation, it only tags the value with the specified typename, therefore,
it cannot be used to convert a number into text or other incompatible types

Flexible type acceptance

FatScript offers flexibility in type acceptance through the inclusion of a base type. This system allows for the creation of
interrelated types that can be interchangeably used in methods or as elements in a List.

For example, consider the types A, B, and C. If types B and C exclusively incorporate type A in their definitions, they are
considered to share the same characteristics derived from A, making B and C compatible types under the base of A.

Here is how this looks in code:

A = (_)

B = (A, b = true)

C = (A, c = true)

method1 accepts both types B and C

method1 = (a: A) -> 'valid'

this logic also applies to lists

mixedList: List/A = [B(), C()]

type flexibility is only possible if the data type is based on Scope

Caveat

This system allows a method designed to accept an object of type B to also accept an object of type C due to their common base
in A:

method2 = (x: B) -> 'valid'

method2(C()) # returns 'valid' (unexpectedly?)

Although the flexible system is generally useful, it may be inadequate when an exact type match is necessary. In such cases, the
type could be explicitly verified within the method, for example, by using x == B to accept only objects of type B.

To restrict type flexibility and ensure an exact match, StrictType should be included in the type definition:

Types

24

C = (A, StrictType, c = true) # C now requires strict type matching

This modification prevents C from being used where A or B are accepted, even though both share the same base type A.

Composite types

In FatScript, composite types allow you to define complex data structures composed of simpler types to restrict parameter
acceptance in methods and assignments. They are represented using slashes / to separate the types within the composite type
definition.

Let's go through a few examples and understand how composite types work:

1. ListOfNumbers = List/Number, defines a composite type ListOfNumbers, which is a list that can only
contain numbers.

2. Matrix = List/List/Number, defines a composite type Matrix, which is a list of lists that can only contain
numbers.

3. MethodReturningListOfNumbers = Method/ListOfNumbers, defines a composite type
MethodReturningListOfNumbers, which is a method that returns a ListOfNumbers.

4. NumericScope = Scope/Number, defines a composite type NumericScope, which is a scope whose entries
can only be of type number.

See also

Type package

Any

25

Any
A virtual type that encompasses all types and no types at the same time.

Default type

Any is the inferred type and return type when no type is explicitly annotated in a method. For example:

identity = _ -> _

is equivalent to:

identity = (_: Any): Any -> _

Using Any, be it implicitly or explicitly, disables type checking for a parameter. The explicit annotation can be a useful in cases
where you want to make it clear that you are giving flexibility in the accepted type.

Being too liberal with Any can make your code less predictable and harder to maintain. It's generally recommended to be more
specific with type annotations whenever possible:

Example of using Any that can lead to issues

console <- fat.console

doubleIt = (arg: Any): Void -> console.log(arg * 2)

doubleIt(2) # prints: '4'

doubleIt('a') # yields: Error: unsupported expression > Text <multiply> Number

This example shows that although the Any type annotation allows flexibility in the parameter type, it can also result in
unexpected behavior if an argument of an unexpected type is passed in. By being more specific with the type annotation, such
as Number, you can make your code more predictable and self-evident.

Example of using a specific type annotation for more predictability

console <- fat.console

doubleIt = (num: Number): Void -> console.log(num * 2)

doubleIt(2) # prints: '4'

doubleIt('a') # yields: TypeError: type mismatch > num

By using Number as the type annotation, the doubleIt method is now more specific and only accepts arguments of type
Number.

Comparisons

The only possible operation with Any is comparing to it, but note that Any accepts all values indistinctly, so there is no
practical use for it:

null == Any # true

true == Any # true

12345 == Any # true

'abcd' == Any # true

[1, 2] == Any # true

{ a = 8 } == Any # true

comparisons with Any can't be used to check for the presence of a value in a scope as even null is accepted

Void

26

Void
When you look into the 'Void', only 'null' can be seen.

Is there anybody out there?

An entry is evaluated to null if not defined on current scope.

You can compare with null using equality == or inequality !=, like:

a == null # true, if 'a' is not defined

0 != null # true, because 0 is a defined value

Keep in mind that you can't declare an entry with no value in FatScript.

While you can assign null to an entry, it causes different behaviors depending on whether the entry already exists in the scope
and whether it's mutable or not:

If an entry hasn't been declared yet, assigning it null declares the entry in the scope but leaves it without an
observable value.
If an entry has been declared and is null, assigning it null has no effect.
If it already exists, is non-null and immutable, assigning null raises an error.
If it already exists, is non-null and mutable, assigning null removes the value.

Delete statement

Assigning null to a mutable entry is the same as deleting its value from the scope. If deleted, it's type is also erased.

~ m = 4 # mutable number entry

m = null # deletes m from scope

null entries are always mutable and may transition to an immutable state when a value is assigned

Comparisons

You can use Void to check against the value of an entry also, like:

() == Void # true

null == Void # true

false == Void # false

0 == Void # false

'' == Void # false

[] == Void # false

{} == Void # false

Note that Void only accepts () and null.

Forms of emptiness

In FatScript, the concept of "emptiness" or the absence of a value can be represented in two ways: using null or empty
parentheses (). They are effectively identical, in terms of behavior in code:

null == null # true

() == null # true

() == () # true

Using null

The null keyword explicitly denotes the absence of a value. It is commonly used in scenarios where a parameter or return
value might not point to any value.

method(null, otherParam)

var = null

Void

27

It can also be used to make a parameter optional, allowing methods to be called with varying numbers of arguments:

method = (mandatory: Text, optional: Text = null) -> {

 ...

}

null can be used explicitly in any context where an absence of value needs to be represented

Using empty parentheses

When used in the context of method returns, () can signify that the method does not return any meaningful value.

fn = -> {

 doSomething

 ()

}

Here, fn performs some action and then uses () to indicate the absence of a meaningful return value, effectively returning
void.

the difference lies in code style, so this is just a suggestion, not a hard rule

See also

Void prototype extensions

Boolean

28

Boolean
Booleans are very primitive, they can only be 'true' or 'false'.

Comparisons

Aside from equality == and inequality !=, booleans also accept the following operators:

& logical AND

true & true == true

true & false == false

false & true == false

false & false == false

AND short-circuits expression if left-hand side is false

| logical OR

true | true == true

true | false == true

false | true == true

false | false == false

OR short-circuits expression if left-hand side is true

% logical XOR (exclusive OR)

true % true == false

true % false == true

false % true == true

false % false == false

XOR always evaluates both sides of the expression

Bang operator

!! coerces any type into boolean, like so:

null -> false
zero (number) -> false
non-zero (number) -> true
empty (text/list/scope/chunk) -> false
non-empty (text/list/scope/chunk) -> true
method -> true
error -> false

logical AND/OR (&, |) and conditional flows (=>, ?) will implicitly coerce to boolean

See also

Boolean prototype extensions
Fuzzy type
Flow control

Number

29

Number
A mathematical concept used to count, measure and do other maths stuff.

Declaration

The Number type is implemented as double. Here's how to declare a number:

a = 5 # number declaration (immutable)

b: Number = 5 # same effect, with type-checking

c: Number = a # initiating from entry value, also 5

d = 43.14 # with decimals

To declare a mutable entry, prepend it with the tilde operator:

~ a = 6 # mutable number entry

a += 1 # adds 1 to 'a', yields 7

Operating numbers

Numbers accept quite a few operations:

== equal
!= not equal
+ plus
- minus
* multiply
/ divide
% modulus
** power
< less
<= less or equal
> more
>= more or equal
& logical AND
| logical OR

Caveats

For logical operations and flow control, keep in mind that zero is falsy and non-zero is truthy.

For equality operators, although 0 and null are evaluated as falsy, in FatScript they are not the same:

0 == null # false

Precision

Although the arithmetic precision of a IEEE 754 double is higher, fry employs rounding tricks to improve human
readability when printing long decimal sequences as text. Additionally, it uses an epsilon of 1.0e-06 for 'equality'
comparisons between numbers.

In 99.999% of use cases, this approach provides both more convenient comparisons and more natural-looking numbers:

Equality epsilon

x = 1.0e-06

x: Number = 0.000001

Smaller differences are treated as the "same" number by comparison

x == 0.0000015

Boolean: true # the 0.0000005 difference is ignored

Floating-point numbers aren't distributed evenly on the number line. They are dense around 0, and as the magnitude increases,
the 'delta' between two expressible values increases:

Number

30

_____________________________________0_____________________________________

+infinity | | | | | | ||| | | | | | | -infinity

the biggest contiguous integer is 9,007,199,254,740,992 or 2^53

You can still have much larger numbers, around 10^308, which is:

1000

00

00

000

Bear in mind that if you add 1 to 10^308, no matter how many times you do it, it will always result in the same value! You need
to add at least something near 10^293 in a single operation for it to be considered, as the numbers need to be of similar orders
of magnitude. To discreetly handle numbers exceeding 2^53, consider using the HugeInt type.

Also, the infinity keyword provides a clear, unambiguous representation of values that soar into the realms beyond the
largest expressible numbers, approaching the theoretical infinity.

See also

Number prototype extensions
Math library

HugeInt

31

HugeInt
An advanced numerical data type designed to handle very large integers.

Declaration

The HugeInt type supports integers up to 4096 bits. Here's how you can declare a HugeInt:

h = 0x123456789abcdef # HugeInt declaration

HugeInt is always expressed in hexadecimal format

Operating HugeInts

HugeInt supports a variety of operations, making it versatile for complex calculations:

== equal
!= not equal
+ plus
- minus
* multiply
/ divide
% modulus
** power
< less
<= less or equal
> more
>= more or equal
& logical AND
| logical OR

Caveats

In FatScript, HugeInt is specifically designed as an unsigned type, and thus it can only represent positive values.

Interactions between HugeInt and other numeric types, such as Number, are not directly available. To perform such
operations, you should convert the value to HugeInt using its constructor (available through the prototype extensions).

Precision

HugeInt offers high precision for very large integers, essential in fields like cryptography and large-scale computations. This
precision remains consistent across its entire range.

prime = 0xfffffffffffffffc90fdA... # a large prime number

Contrary to floating-point numbers, HugeInt represents discrete integer values, maintaining consistent precision and spacing
throughout its range:

0_____________________________________max.

| | | | | | | | | | | | | | overflow!

the maximum value is 2^4096 - 1, equivalent to a number with 1233 decimal digits or the 0xfff... literal (with 1024
repetitions of the letter f)

HugeInt is particularly well-suited for scenarios that demand exact integer arithmetic without rounding errors, especially
when dealing with values far beyond the limits of Number type. It is important to ensure that all operations remain within its
supported capacity, as exceeding this limit will raise a ValueError.

See also

HugeInt prototype extensions

Text

32

Text
Texts can hold many characters, and are sometimes referred to as strings.

Declaration

Text entries are declared using quotes:

a = 'hello world' # smart text declaration

a = "hello world" # raw text declaration

a: Text = 'hello world' # smart, optionally verbose

Manipulating text

Concatenation

In FatScript, you can concatenate, or join, two texts using the + operator. This operation connects the two texts into one. For
example:

x1 = 'ab' + 'cd' # Outputs 'abcd'

Text subtraction

FatScript also supports a text subtraction operation using the - operator. This operation removes a specified substring from the
text. For instance:

x2 = 'ab cd'

x2 - ' ' == 'abcd' # Outputs true

In the above example, the space character ' ' is removed from the original text 'ab cd', resulting in 'abcd'.

Text selection

Selection allows you to access specific parts of a text using indices. In FatScript, you can use either positive or negative indices.
Positive indices start from the beginning of the text (0 is the first character), and negative indices start from the end of the text
(-1 is the last character).

for detailed explanation about the indexing system in FatScript, refer to the section on accessing and selecting items in List

When only one index is passed to the selection function, a single character from the text is selected. When a range is passed to
the function, a fragment from the text is selected. This selection is inclusive, meaning that it includes the characters at both the
start and end indices, unless using half-open range operator ..< exclusive on the right-hand side.

Like with lists, accessing items that are out of valid indices will generate an error. For selections, no errors are generated when
accessing out-of-bounds indices; instead, an empty text is returned.

x3 = 'example'

x3(1) # 'x'

x3(2, 4) # 'amp'

x3(..2) # 'exa'

x3(..<2) # 'ex'

Direct manipulation

Text mutation allows altering specific characters by position. For example, in ~ text = 'ai', you can modify the last
character with text[1] = 'e', transforming the text into 'ae'.

Special characters

Characters such as quotes ' / " can be escaped with backslash \.

'Rock\'n\'roll'

"Where is \"here\"?"

you only need to escape quotes of same type used as text delimiter

Text

33

Other supported escape sequences are are:

backspace \b
new line \n
carriage return \r
tab \t
escape \e
octet in base-8 representation \ooo
octet in hexadecimal representation \xhh
backslash itself \\

Smart texts

When declared with single quotes ', the smart mode is enabled, and interpolation is performed for any code wrapped in curly
brackets {...}:

text = 'world'

interpolated = 'hello {text}' # outputs 'hello world'

the template is processed in a layer with access to current scope

Note that the use of new lines or other smart texts inside the interpolation template code is not supported, but you can make
method calls if you need to compose the result with something more complex.

You can avoid interpolation by escaping the opening bracket:

escaped = 'hello \{text}' # outputs 'hello {text}'

Alternatively, you can avoid interpolation by using raw texts.

Raw texts

When declared with double quotes " the raw text mode is assumed and interpolation is disabled.

Smart mode vs. raw mode example:

'I am smart: {interpolated}' # using value from previous example

I am smart: hello world # replacement occurs

"I am raw: {interpolated}" # brackets are just common characters

I am raw: {interpolated} # no interpolation occurs

Operating texts

== equal
!= not equal
+ plus (concatenate)
- minus (removes substring)
< less (alphanumeric)
<= less or equal (alphanumeric)
> more (alphanumeric)
>= more or equal (alphanumeric)
& logical AND (coerced to boolean)
| logical OR (coerced to boolean)

Encoding

FatScript is designed to operate with text encoded in UTF-8. This design choice acknowledges the prevalence of these
encoding systems and optimizes the language for broad compatibility.

UTF-8 is a multi-byte encoding system capable of representing any character in the Unicode standard. This universal character
encoding scheme uses 8 to 32 bits to represent a character, enabling the depiction of a vast array of symbols from numerous
languages and writing systems. Notably, the first 128 characters (0-127) of UTF-8 align precisely with the ASCII set, making
any ASCII text a valid UTF-8 encoded string.

Text

34

In FatScript, the Text data type is a sequence of Unicode characters, inherently encoded in UTF-8, therefore operations such as
text.size, text(index), and text(1..4) will correctly count, access, or slice text irrespective of the complexity of
the characters. These operations consider a complete multi-byte UTF-8 character as a single unit, ensuring correct and
predictable behavior.

See also

Text prototype extensions

Method

35

Method
Methods are recipes that can take arguments to "fill in the blanks".

in FatScript, we refer to functions as Methods, irrespective of their definition context

Definition

A method is anonymously defined with a thin arrow ->, like so:

<parameters> -> <recipe>

Parameters can be omitted if none are needed:

-> <recipe> # arity zero

To register a method to the scope, assign it to an identifier:

<identifier> = <parameters> -> <recipe>

Parameters loaded into a method's execution scope are immutable, ensuring that the method's operations do not alter their
original state. For mutable behavior, consider passing a scope or utilizing a custom type capable of encapsulating multiple
values and states.

Optional parameters

While method signatures typically require a fixed number of mandatory parameters, FatScript supports optional parameters
through default values:

greet = (name: Text = 'World') -> {

 'Hello, {name}'

}

greet() # 'Hello, World'

In this example, the name parameter is optional, defaulting to 'World' if no argument is provided. This feature allows for more
flexible method invocations.

Implicit argument

A convenience offered by FatScript is the ability to reference a value passed to the method without explicitly specifying a name
for it. In this case, the implicit argument is represented by the underscore _.

Here's an example that illustrates the use of implicit argument:

double = -> _ * 2

double(3) # output: 6

You can use an implicit argument whenever you need to perform a simple operation on a single parameter without assigning a
specific name to it, but note that the method must have arity zero to trigger it.

Arguments handling

In FatScript, while there is support for optional parameters and implicit argument, any other extra arguments are simply ignored
to enhance both flexibility and performance.

The design decision to ignore extra arguments also means there is no native support for variable-length arguments in the
traditional sense. To achieve similar functionality, you may declare optional parameters like so:

vaMethod = (v1 = null, v2 = null, v3 = null, v4 = null) -> ...

keep in mind that you need to explicitly list each parameter you want to capture and defining a very large number of
parameters (e.g., more than 10) may reduce method call performance

Auto-return

Method

36

FatScript uses auto-return, meaning the last standing value is returned:

answer: Method = (theGreatQuestion) -> {

 # TODO: explain Life, the Universe and Everything

 42

}

answer('6 x 7 = ?') # outputs: 42

Return type safety

In FatScript, one peculiarity is that even when you declare a method with a specific return type, the language allows for null
values, like in:

fn = (arg: Text): Text -> ... ? ... : null

This means that while the method is declared to return Text, the return value is, in a sense, optional because the method can
also return Void. The only strict guarantee is that if the method tries to return an incompatible type, such as a Number or
Boolean, a TypeError will be raised. This design choice introduces implicit flexibility while still maintaining a degree of
type safety.

If you need to ensure a non-null outcome, you can wrap your call with Option like this:

Option(fn(myArg)).getOrElse('fallbackVal')

Procedures

FatScript introduces a unique feature that simplifies method calls, when no arguments are involved.

The <> symbol declares a Procedure, an argument-free function that executes automatically when referenced:

<identifier> = <type> <> <recipe>

for procedure syntax the type needs to be a single word; if you need a composite type, declare it as an alias beforehand
and use the alias

passing arguments to a procedure will result in an error, as procedures do not accept arguments

Key benefits:

1. Reduced boilerplate: Reduces the need for parentheses, making code cleaner and more concise, for zero-parameter
procedures that act like properties.

2. Dynamic computation: Allows for dynamic computation with outputs that can change based on the object's internal or
global state.

3. Deferred execution: Enables deferred execution, useful in asynchronous programming and complex initialization
patterns.

starting in version 4.0.0, only procedures support automatic execution without parentheses; classic zero-arity methods
are no longer executed automatically and require parentheses () for execution

Avoiding an automatic call

To reference a procedure without triggering the automatic calling feature, you can use the get syntax:

foo('bar') # yields a reference to foo.bar, without calling it

FatScript also offers self and root keywords to reference procedures at the local and global levels, respectively:

self('myLocalProcedure')

root('myGlobalProcedure')

The tilde ~ also operator allows you to bypass the automatic call feature, providing flexibility in procedure handling:

Both lines below fetch the procedure reference, without calling it

foo.~bar

~ myProcedure

Method

37

Argument labels

FatScript supports argument labels, which allow you to specify names for arguments at the call site. These labels improve code
readability and self-documentation by making the intent of each argument explicit:

Defining a method with parameters

fn = (a: Number, b: Number) -> a + b

Calling the method with argument labels

fn(a = 1, b = 2) # output: 3, same as fn(1, 2)

If provided, labels are validated against the method's parameter names. Arguments must be passed in the same order as defined
in the method signature. Using incorrect labels will raise an error:

fn(b = 1, a = 2) # CallError: invalid name 'b' at pos: 1

arguments are resolved sequentially, not by the labels; therefore, out-of-order resolution is not allowed, even when
labels are used

Contrast with type instantiation

While argument labels in method calls are mostly decorative, they play a functional role in type instantiation. When creating
instances of types, argument labels are matched by name to the type's properties, allowing out-of-order resolution.

By maintaining sequential resolution for methods, FatScript ensures better performance in method calls, while type
instantiation benefits from the flexibility of named argument resolution.

Tail Recursion Optimization

FatScript supports Tail Recursion Optimization (TRO) to enhance performance by conserving stack space. To benefit from this
optimization, several conditions must be satisfied:

1. Explicit parameters: Methods must explicitly declare parameters; the implicit argument feature is not supported for
TRO.

2. Flow control: TRO is only compatible with If-Else, Cases, and Switch constructs for branching.

3. Call structure: Nested method calls, such as x(a)(b)(c), are not supported for TRO.

4. Recursive calls: The method must call itself recursively by name as the final operation in its execution path.

For example, a function correctly set up for TRO might look like this:

tailRec = (n: Number, m: Number): Void -> {

 n > m => console.log('done')

 _ => {

 console.log(n)

 tailRec(n + 1, m)

 }

}

In this example, tailRec recursively calls itself as the final operation in one of the branches, making it eligible for
optimization.

You can check if TRO has been enabled for your method using static analysis with the fry --probe option.

TRO can be disabled by wrapping the recursive call within parentheses, as shown below:

 ...

 (tailRec(n + 1, m)) # no TRO

See also

Method prototype extensions

List

38

List
Lists are ordered collections of items of the same type, accessed by index.

Definition

Lists are defined with square brackets [], like so:

list: List/Text = ['apple', 'pizza', 'pear']

Lists do not allow mixing of types. The type of a list is determined by the first item added to it, consequently, empty lists are
untyped.

Lists skip empty positions, so an item that evaluates to null is ignored:

a = 1

c = 3

[a, b, c] # outputs: [1, 3] (b is skipped over)

Access

Individual items

List items can be accessed individually with zero-based index call:

list(0) # 'apple'

list(2) # 'pear'

Negative values will index backwards, starting from -1 as the last item:

list(-1) # 'pear'

Accessing items that are out of valid indices will generate an error:

 0 1 2 > 2

Error ['apple', 'pizza', 'pear'] Error

 < -3 -3 -2 -1

Selections

Indexes for start and end work exactly the same as when accessing individual items, so negatives count from the last item and
can be regressive. However, when using ranges, no errors are generated when accessing out-of-bounds indices; instead, an
empty list is returned.

list(0..0) # ['apple']

list(4..8) # []

list(1..-1) # ['pizza', 'pear']

One index can be left blank, and the start from the first or the end at the last item is assumed:

list(..1) # ['apple', 'pizza']

list(1..) # ['pizza', 'pear']

Nested lists

A matrix can be used and accessed like so:

matrix = [

 [1, 2, 3]

 [4, 5, 6]

]

matrix(1)(0) # yields 4 (1: second line, then 0: first index)

for simplicity, the example uses a 2D matrix, but could be n-dimensional

List

39

Operations

== equal
!= not equal
+ addition (concatenation effect)
- subtraction (difference effect)
& logical AND
| logical OR

logical AND/OR evaluate empty lists as false, otherwise true

List addition (concatenation)

The list addition operation allows you to combine two lists into a new list:

x = [1, 2, 2, 3]

y = [3, 3, 4, 4]

x + y # result: [1, 2, 2, 3, 3, 3, 4, 4]

In this case, using the addition operator + to merge lists x and y, the elements from both lists are combined into a single list.
The order of the elements in the resulting list is determined by the order in which the lists were added.

there is no removal of duplicate elements during the concatenation

Quick-append

For better performance, you can take advantage of += operator, e.g.:

~ list += [value] # faster

has same effect as slower alternatives:

~ list = []

list = list + [value] # explicit concatenation

list[list.size] = value # indexed by 'size', prototype member

Another detail of the += operator, which also applies to other types, is the automatic initialization by omission, where if the
entry has not yet been declared previously, it acts as a simple assignment.

List subtraction (difference)

The list subtraction operation allows you to remove elements from the second operand that are present in the first operand,
resulting in a list containing only unique values:

x = [1, 2, 2, 3]

y = [3, 3, 4, 4]

x - y # result: [1, 2]

y - x # result: [4]

In this case, when we subtract the list y from the list x, the elements with the value 3 are removed because they are present in
both lists. The result is the list [1, 2]. Similarly, when we subtract the list x from the list y, the only remaining element is the
value 4.

only exactly identical values are removed during the subtraction

See also

List prototype extensions
Mapping over a List

Scope

40

Scope
A scope is akin to a dictionary, where values are associated with keys.

Definition

Scopes are defined using curly brackets {}, as shown below:

myCoolScope = {

 place = 'here'

 when = 'now'

}

Scopes store entries in alphabetical order, a characteristic that becomes apparent when mapping over a scope.

Access

There are three ways you can directly access entries inside a scope.

Dot syntax

myCoolScope.place # output: 'here'

Get syntax

assuming prop = 'place'

myCoolScope(prop) # output: 'here'

In both methods, if the property is not present, null is returned. If the outer scope is not found, an error is raised.

Optional chaining syntax

Use the question-dot ?. operator to safely chain potentially non-existent outer scopes:

nonExisting?.prop # returns null

The optional chaining syntax does not raise an error when the outer scope is null.

Operations

== equal
!= not equal
+ addition (merge effect)
- subtraction (difference effect)
& logical AND
| logical OR

logical AND/OR evaluate empty scopes as false, otherwise true

Scope addition (merge)

The second operand acts as a patch for the first operand:

x = { a = 1, b = 3 }

y = { b = 2 }

x + y # results in { a = 1, b = 2 }

y + x # results in { a = 1, b = 3 }

values from the second operand replace those from the first

Scope subtraction (difference)

Subtraction removes elements from the first operand that are identical to those in the second operand:

Scope

41

x = { a = 1, b = 3 }

y = { a = 1 }

x - y # results in { b = 3 }

only values that are exactly identical are removed

Scoped Blocks

Scoped Blocks in FatScript allow for executing statements within the context of a specific scope:

object.{

 # Statements executed in the context of 'object'

}

Here, object is the target scope. Within the block, you can directly access and modify object's properties.

Features

Isolation: entries declared within a Scoped Block are local to that scope and do not affect the outer scope
Outer Scope Access: Scoped Blocks can access entries from the outer scope

Example

x = {}

x.{

 a = 5 # 'a' is now a property of 'x'

 b = a + 3 # 'b' is also a property of 'x'

}

Scope interactions

FatScript uses sophisticated mechanisms for managing variables across different scopes, leveraging concepts of lexical scoping
and shadowing to provide powerful programming capabilities. This section explores these mechanisms, including assignment
nuances, increment/decrement behaviors, and the innovative use of the += operator for boolean toggling.

Assignment

The assignment operator (=) copies values from outer scopes into current scope, defining a new value:

~ n = 1

x = {}

x.{ ~ n = n } # now x.n == 1, and x.n is independent from root.n

x.{ c = n } # has similar effect, however 'c' is immutable

the same concept applies to code running on a method scope

Caveat

Using ~ n = n + 1 inside a block or method adds a new 'n' in the current scope, initialized with the value of n + 1 from
the nearest enclosing scope, without altering the outer n.

Incrementing and decrementing

Increment (+=) and decrement (-=) operations, interact with variable scoping in a different way. These operations search for the
nearest instance of a variable, starting from the current scope and moving outward recursively, and then modify that instance
directly.

~ outerN = 1

fn = -> {

 outerN += 1 # targets and increments 'outerN' in the outer scope

}

Auto-initialization with +=

Scope

42

FatScript also provides a special behavior regarding increment operator (+=). If the entry doesn't exist, increment works as a
regular assignment as if you had written the following for n += 1:

n == Void ? n = 1 : n += 1

The auto-initialization feature can be particularly useful when used in combination with dynamic entries for dynamic
programming.

this feature is exclusively available for increment operator, decrement can't initialize non-existent values

Boolean toggling with +=

Generally, booleans don't allow addition operations. FatScript, however, extends the += operator's functionality to boolean
types, allowing for an intuitive toggle mechanism within inner scopes.

The expression flag += !flag effectively toggles the boolean value, even when flag is defined in an outer scope.

in the particular case of booleans, the only distinction between = and += is scoping

Other compound assignment operators

Similarly, other compound assignment operations such as *=, /=, %=, and **= are supported by numeric types and respect the
same scoping rules that apply to increment and decrement operations.

See also

Dynamic entries
Scope prototype extensions
Mapping over a scope

Error

43

Error
There is great wisdom in expecting the unexpected too.

Default subtypes

While some errors may be raised with the base Error type, most are subtyped.

See the definitions in the error prototype extensions.

Declaration

Errors can also be raised explicitly; you must use the type constructor:

_ <- fat.type.Error

Error('an error has ocurred') # raises a generic error

MyMistake = Error

MyMistake('another error has ocurred') # raises a MyMistake subtype error

Comparisons

Errors always evaluate as falsy:

Error() ? 'is truthy' : 'is falsy' # is false

Errors are comparable to their type:

Error() == Error # true

read also about type comparison syntax

A naive way of handling errors could be:

_ <- fat.console

handling the returned error

maybeFail() <= Error => log('an error has happened')

_ => log('success')

this only works if option -e / continue on error is set

Another naive way to deal with errors, but one that always works, is to use a default operation:

maybeFail() ?? log('an error occurred')

Although the naive approach may work, the proper way to deal with errors is by setting an error handler using the trapWith
method found in the failure library.

See also

Failure library
Error prototype extensions

Chunk

44

Chunk
Chunks are just binary blocks of data.

Declaration

Chunks cannot be declared explicitly; you must use the type constructor and apply one of the following strategies:

_ <- fat.type.Chunk

Chunk(null) # Void -> [] (empty chunk)

Chunk(4) # Number -> [0, 0, 0, 0] (blank bytes)

Chunk('ABC') # Text -> [65, 66, 67]

Chunk([65, 66, 67]) # List/Number -> [65, 66, 67]

list of numbers are expected to contain valid byte values (0-255), otherwise an error is raised

Manipulating chunks

Concatenation

In FatScript, you can concatenate, or join, two chunks using the + operator. For example:

abCombined = chunkA + chunkB

Chunk selection

Selection allows access to specific parts of a chunk using indices. FatScript supports both positive and negative indices.
Positive indices start from the beginning of the chunk (with 0 as the first byte), while negative indices start from the end (-1 is
the last byte).

for detailed explanation about the indexing system in FatScript, refer to the section on accessing and selecting items in List

Selecting with one index retrieves a single byte from the chunk (as number). Using a range of bytes, selects a fragment
inclusive of both start and end indices, except when using the half-open range operator ..<, which is exclusive on the right-
hand side.

Accessing indices outside the valid range will generate an error for individual selections. For range selections, out-of-bounds
indices result in an empty chunk.

x3 = Chunk('example')

x3(1) # 120 (ASCII value of 'x')

x3(..2) # new Chunk containing 3 bytes (corresponding to 'exa')

Direct manipulation

Mutation in binary data allows changing specific bytes by position.

For example, in ~ chunk = Chunk([65, 66, 67]), you can modify the last byte with chunk[2] = 68,
transforming the data into [65, 66, 68].

Comparisons

Chunk equality == and inequality != comparisons are supported.

See also

Chunk prototype extensions

Flow control

45

Flow control
Move along in a continuous stream of decisions that should be made.

Fallback

Default or nullish coalescing operations, are defined with double question marks ?? and work the following way:

<maybeNullOrError> ?? <fallbackValue>

In case the left-hand side is not null nor Error, then it's used; otherwise, fallbackValue is returned.

similarly you can use the nullish coalescing assign operator ??=

If

If statements are defined with a question mark ?, like so:

<condition> ? <response>

as there is no alternative null is returned if condition is not met

If-Else

If-Else statements are defined with a question mark ? followed by a colon :, like so:

<condition> ? <response> : <alternativeResponse>

To use multiline If-Else statements, wrap the response in curly brackets {...} like so:

<condition> ? {

 <response>

} : {

 <alternativeResponse>

}

Cases

Cases are defined with the thick arrow => and are automatically chained, creating an intuitive and streamlined syntax similar
to a switch statement without the possibility of fall-through. This allows for unrelated conditions to be mixed together,
ultimately resulting in a more concise "if-else-if-else" structure:

<condition1> => <responseFor1>

<condition2> => <responseFor2>

<condition3> => <responseFor3>

...

Example:

choose = (x) -> {

 x == 1 => 'a'

 x == 2 => 'b'

 x == 3 => 'c'

}

choose(2) # 'b'

choose(8) # null

To provide a default value for your method, you can add a catch-all case using an underscore _ at the end of the sequence:

choose = (x) -> {

 x == 1 => 'a'

 x == 2 => 'b'

 x == 3 => 'c'

 _ => 'd'

}

Flow control

46

choose(2) # 'b'

choose(8) # 'd'

For more complex scenarios, you can use blocks as outcomes for each case:

...

 condition => {

 # do something

 'foo'

 }

 _ => {

 # do something else

 'bar'

 }

...

Cases must end in a catch-all case _ or end of block. The most effective use of Cases is within methods at the bottom of the
method body.

While it's possible to add nested Cases, it's best to avoid overly complex constructions. This makes code harder to follow and
likely misses the point of using this feature.

It may be more appropriate to extract that logic into a separate method. FatScript encourages developers to split logic into
distinct methods, helping to prevent spaghetti code.

Switch

The Switch operator is denoted by the double right arrow >> symbol, which guides the flow of control based on the value's
match against a series of cases:

Syntax:

<value> >> {

 <caseValue1> => <responseFor1>

 <caseValue2> => <responseFor2>

 ...

 _ => <defaultResponse>

}

Each case in the Switch block is evaluated in order until a match is found and the result of the matching case is returned:

choose = -> _ >> {

 1 => 'one'

 2 => 'two'

 3 => 'three'

 _ => 'other'

}

choose(2) # 'two'

choose(4) # 'other'

Switch cases can also involve expressions, allowing for dynamic matching:

evaluate = (x, y) -> x >> {

 y + 1 => 'just above y'

 y - 1 => 'just below y'

 _ => 'not directly around y'

}

evaluate(5, 4) # 'just above y'

evaluate(3, 4) # 'just below y'

evaluate(7, 4) # 'not directly around y'

Tap

The Tap operator is denoted by the double left arrow << symbol, which facilitates the execution of side effects without altering
the main result of an expression. It is designed to process values through specified methods (taps) that can perform side effects,
while still returning the original value of the expression.

Flow control

47

Syntax:

<result> << <tapMethod>

the right-hand side of a tap must always be a method

In this structure, <result> is an expression whose value is passed to <tapMethod>, which executes using <result> as
its input but does not affect the final value of the expression. Instead, <tapMethod> is used purely for its side effects.

See how the tap operator can be used:

console <- fat.console

increment = x -> x + 1

result = increment(4) << console.log

In this example, increment(4) computes to 5, which is then passed to console.log and although console.log
returns null, the final result assigned to result is 5.

Multiple side effects can be chained sequentially, each receiving the same initial result:

val = pure(in) << fx1 << fx2 << fx3

Loops

48

Loops
Repeat, repeat, repeat, repeat, repeat...

Base syntax

All loops are build with an "at" sign @, like so:

<expression> @ <loopBody>

While loop

The loop body will execute while the expression evaluates to:

true
non-zero number
non-empty text/chunk

The execution will terminate when the expression evaluates to:

false
null
zero number
empty text/chunk
error

For example, this loop prints numbers 0 to 3:

_ <- fat.console

~ i = 0

(i < 4) @ {

 log(i)

 i += 1

}

Mapping syntax

You can map over ranges, lists and scopes with a mapper, like so:

<range|collection> @ <mapper>

A new list is generated based from the return values of the mapper.

Mapping over a range

Using range operator .. the mapper will receive a number as input sequentially from the left bound to the right bound:

4..0 @ num -> num + 1 # returns [5, 4, 3, 2, 1]

range syntax is inclusive on both sides, e.g. 0..2 yields 0, 1, 2

There is also half-open range operator ..< exclusive on the right-hand side.

caveat: half-open range won't work with reverse direction, always needs to be from the minimum to maximum

Mapping over a list

The mapper will receive items in order (from left to right):

[3, 1, 2] @ item -> item + 1 # returns [4, 2, 3]

Mapping over a scope

The mapper will receive the names (keys) of the entries stored in the scope in alphabetical order:

Loops

49

{ c = 3, a = 1, b = 2 } @ key -> key # yields ['a', 'b', 'c']

on the examples we have used list and scope literals, but an entry or call that evaluates to a list or a scope will have the
same effect

To access entries in a scope, you refer to it by name, but in this case, it needs to be defined in the outer scope, for example:

myScope = { c = 3, a = 1, b = 2 }

myScope @ key -> myScope(key) # returns [1, 2, 3]

FatScript uses an intelligent caching feature that prevents this syntax from generating additional effort to search for the current
element in the scope while mapping.

Libraries

50

Libraries
Let's talk about the sweet fillings baked into FatScript: the libraries!

Standard libraries

Essentials

These are the fundamental libraries you would expect to be available in a programming language, providing essential
functionality:

async - Asynchronous workers and tasks
bridge - Bridge between FatScript and external C libraries
color - ANSI color codes for console
console - Console input and output operations
curses - Terminal-based user interface
enigma - Cryptography, hash and UUID methods
failure - Error handling and exception management
file - File input and output operations
http - HTTP handling framework
math - Mathematical operations and functions
recode - Data conversion between various formats
sdk - Fry's software development kit utilities
smtp - SMTP handling framework
system - System-level operations and information
time - Time and date manipulation

Type Package

This package extends the features of FatScript's native types:

Void
Boolean
Number
HugeInt
Text
Method
List
Scope
Error
Chunk

Extra package

Additional types implemented in vanilla FatScript:

Date - Calendar and date handling
Duration - Millisecond duration builder
Fuzzy - Probabilistic values and fuzzy logic operations
HashMap - Quick key-value store
Logger - Logging support
Memo - Generic memoization utility
MouseEvent - Mouse event parser
Opaque - Utility for soft protection of data
Option - Encapsulation of optional value
Param - Parameter presence and type verification
Sound - Sound playback interface
Storable - Data store facilities

Import-all shorthand

If you want to make all of them available at once, you can simply do the following, and all that good stuff will be available to
your code:

Libraries

51

_ <- fat._

While this feature can be convenient when experimenting on the REPL, be aware that it brings in all the library's constants and
method names, potentially polluting your global namespace.

fat.std

Alternatively, import the "standard" library, which imports all types (including those from the extra package), as well as named
imports from all other packages, like this:

_ <- fat.std

This is equivalent to:

_ <- fat.type._

_ <- fat.extra._

async <- fat.async

bridge <- fat.bridge

color <- fat.color

console <- fat.console

curses <- fat.curses

enigma <- fat.enigma

failure <- fat.failure

http <- fat.http

file <- fat.file

math <- fat.math

recode <- fat.recode

sdk <- fat.sdk

smtp <- fat.smtp

system <- fat.system

time <- fat.time

Note that importing everything in advance can add unnecessary overhead to the startup time of your program, even if you only
need to use a few methods.

As a best practice, consider importing only the specific modules you need, with named imports. This way, you can keep your
code clean and concise, while minimizing the risk of naming conflicts or performance issues.

Hacking and more

Under the hood, libraries are built using embedded commands. To gain a deeper understanding and explore the inner workings
of the interpreter, dive into this more advanced topic.

async

52

async
Asynchronous workers and tasks

Import

_ <- fat.async

Types

The async library introduces the Worker type.

Worker

The Worker is a simple wrapper around an asynchronous operation.

Constructor

Name Signature Brief
Worker (task: Method, wait: Number) Builds a Worker in standby mode

The Worker constructor takes two arguments:

task: The method to be executed asynchronously (the method may not take arguments directly, but you may curry
those in using two arrows on the definition -> ->).
wait (optional): A timeout in milliseconds. If the task does not finish within this time, it is cancelled.

Prototype members

Name Signature Brief
start <> Worker Begin the task
cancel <> Void Cancel the task
await <> Worker Wait for task completion
isDone <> Boolean Check if the task has completed
hasStarted Boolean Set by start method
hasAwaited Boolean Set by await method
isCanceled Boolean Set by cancel method
result Any Set by await method

Standalone methods

Name Signature Brief
atomic (op: Method): Any Execute the operation atomically
selfCancel <> Void Terminate the execution of the thread
processors <> Number Get the number of processors

Usage notes

Worker instances are mapped to system threads on a one-to-one basis and get executed as per the system's scheduling. This
implies that their execution may not always be immediate. To wait for the result of a Worker, employ the await method.

Unlike in other contexts, in asynchronous code, the task: Method executes without access to the scope in which it is
created. It can only access properties that have been 'curried' -> -> into its execution scope or those that are directly
accessible in the global scope.

The global memory limit is shared by all Workers, but a completely new context, including a separate stack, is allocated for
each one. However, in the event of an irrecoverable or fatal error, such as memory or stack exhaustion by one of the Workers,
the interpreter will be halted and all threads terminated.

async

53

to keep maximum performance, avoid using text interpolation within asynchronous tasks

Examples

async <- fat.async

math <- fat.math

time <- fat.time

Define a slow task

slowTask = (seconds: Number): Text -> -> {

 time.wait(seconds * 1000)

 'done'

}

Start the task as a Worker

worker = Worker(slowTask(5)).start

Get the worker result

result1 = worker.await.result # blocks until task is done

Start a task with timeout

task = Worker(slowTask(5), 3000).start # task should timed out

Get the task result

result2 = task.await.result # blocks until task is done or timeout occurs

the await method will raise AsyncError if the task times out before completion

atomic

The atomic wrapper is a critical tool for ensuring thread safety and data integrity in concurrent programming. When multiple
workers or asynchronous tasks access and modify shared resources, race conditions can occur, leading to unpredictable and
erroneous outcomes. The atomic operation addresses this issue by guaranteeing that the method it wraps is executed
atomically. This means the entire operation is completed as a single, indivisible unit, with no possibility of other threads
intervening partway through for the same operation. This is particularly important for operations such as incrementing a
counter, updating shared data structures or files, or performing any action where the order of execution matters:

async.atomic(-> file.append(logFile, line))

While atomic operations are a powerful tool for ensuring consistency, it's important to be mindful of the potential for
contention it introduces. Contention occurs when multiple threads or tasks attempt to execute an operation simultaneously,
leading to potential performance bottlenecks as each thread waits its turn. Overuse or unnecessary use of atomic operations
can significantly degrade the performance of your application by reducing concurrency. Keep only the critical section of code
that absolutely requires atomicity enclosed as an atomic operation.

under the hood, atomic operations are fundamentally guarded by a single global mutex

Async in Web Build

When using fry built with Emscripten (for example, when using FatScript Playground), the platform's limited support for
multi-threading affects the Worker implementation. To maximize cross-platform code compatibility, Worker tasks execute
inline and block the main thread when the start method is called. This approach compromises the advantages of
asynchronous execution but allows a consistent implementation across platforms in many scenarios.

See also

Time library

https://fatscript.org/playground

bridge

54

bridge
Bridge between FatScript and external C libraries

the bridge library allows FatScript to interface with external C libraries by providing dynamic linking capabilities and
foreign function interface (FFI) bindings; this is useful for leveraging performance advantages of C and using existing C
libraries in FatScript applications

Import

_ <- fat.bridge

Types

The bridge library introduces two primary types for handling dynamic linking of external libraries and calling foreign
functions: DLL and FFI.

DLL

The DLL type represents a handle to a dynamically loaded library.

Constructor

Name Signature Brief
DLL (filename) Load a dynamic library

The DLL constructor takes the following argument:

filename: The path to the shared object (.so/.dll) file to be loaded.

FFI

The FFI type allows binding to external functions from the dynamically loaded library, using FatScript's CType system to
match the function's expected input and output types.

Constructor

Name Signature Brief
FFI (lib, name, in, out) Bind to an external function

The FFI constructor takes the following arguments:

lib: A DLL instance representing the loaded library.
name: A name (Text) of the function to bind within the library.
in: A List/Ctype of argument types expected by the function.
out: The CType return type of the function.

Prototype members

Name Signature Brief
call (args...): Any Call the bound function

Aliases

CPointer: Represents a memory pointer (void*-like), base type is Chunk.
CType: Represents C data types in FatScript, base type is Number.

CType

The CType system maps common C types to corresponding FatScript types, allowing safe interaction with C libraries.The
following types are made available in the ctype scope and implement automatic correspondence with FatScript types:

bridge

55

Name C type Correspondence
sint int Number
sintP int* Number
uint unsigned int Number
uintP unsigned int* Number
float float Number
floatP float* Number
double double Number
doubleP double* Number
schar char Chunk
scharP char* Chunk
uchar unsigned char Chunk
ucharP unsigned char* Chunk
sshort short Number
sshortP short* Number
ushort unsigned short Number
ushortP unsigned short* Number
slong long Number
slongP long* Number
ulong unsigned long Number
ulongP unsigned long* Number
string char* (return type) Text
void void (return type) Void
voidP void* Chunk

string must be a dynamically allocated, null-terminated char pointer

Standalone methods

Name Signature Brief
unsafePeek (ptr: CPointer, offset: Number, len: Number): Chunk Read from ptr considering offset and length
detachNode (node: Any): Void Release ownership of memory
marshal (val: Any, type: CType): Chunk Marshal a FatScript value to a raw C type
unmarshal (raw: Chunk, type: CType): Any Unmarshal from a C type back to FatScript
getErrno <> Number Return the errno from the last FFI call
sizeOf (type: CType): Number Get the number of bytes for a given CType

unsafePeek

Allows direct reading of raw memory, which can be used to interface with C data structures. Warning: This method performs
no bounds checking and relies on correct parameters. Misuse can cause system crashes or security vulnerabilities.

detachNode

Relinquishes ownership of memory pointed to by Text or Chunk to prevent double freeing of memory. Consult external
library documentation to understand memory ownership before using detachNode, as it's not always necessary.

marshal

Converts a FatScript value to a raw memory chunk using a specific CType. Useful for composing C structs. Only string and
voidP are valid for marshaling Text and Chunk as pointers types respectively. Warning: Ensure proper handling of buffer
pointers to avoid double freeing of memory.

unmarshal

bridge

56

Casts raw memory chunks to specific FatScript types based on CType. Useful for interpreting data returned from C structs.
Warning: Incorrect usage or incorrect CType can result in undefined behavior or data corruption.

getErrno

The errno from the last FFI call is cached and can be retrieved through this method.

sizeOf

Determines the memory size (in bytes) of a given CType. This is can be useful for safely using functions like unsafePeek.

Example Usage

Loading a library

To load a dynamic library, use the DLL type:

zlibDLL = DLL('libz.so')

This will attempt to load the libz.so shared object library (in this example, the zlib compression library).

Binding to a function

To bind to a function within the loaded library, use the FFI type:

compressFFI = FFI(zlibDLL, 'compress', [ucharP, slongP, ucharP, slong], sint)

This binds to the compress function in the zlib library. The argument types and return type are specified using CType.

Calling the function

Once bound, you can call the function using the call method:

compressedData = compressFFI.call(destBuff, destSize, source, sourceSize)

This calls the compress function and returns the result.

Full Example: compressing data with zlib

_ <- fat.type._

bridge <- fat.bridge

zlibDLL = DLL('libz.so')

{ ucharP, slong, slongP, sint } = bridge.ctype

compressFFI = FFI(zlibDLL, 'compress', [ucharP, slongP, ucharP, slong], sint)

Compress data

source = 'Hello, zlib compression!'.toChunk

destSize = 256

destBuff = Chunk(256)

compressedData = compressFFI.call(destBuff, destSize, source, source.size)

Note that destSize uses the slongP type mapping, and while it is considered immutable in FatScript, it may be mutated
through the function call. This is expected behavior and is way of interfacing FatScript with C.

Advanced raw data manipulation

To have a better understanding of how bridge works, you can study the FFI test case and the sample implementation projects
zlib.fat and qrcode.fat.

Bridge in Web Build

When using fry built with Emscripten (for example, when using FatScript Playground), there is no support for this library.

https://gitlab.com/fatscript/fry/blob/main/test/t123.fat
https://gitlab.com/aprates/zlib
https://gitlab.com/aprates/qrcode
https://fatscript.org/playground

color

57

color
ANSI color codes for console

Import

_ <- fat.color

Constants

black, 0
red, 1
green, 2
yellow, 3
blue, 4
magenta, 5
cyan, 6
white, 7
bright.black, 8
bright.red, 9
bright.green, 10
bright.yellow, 11
bright.blue, 12
bright.magenta, 13
bright.cyan, 14
bright.white, 15

Methods

Name Signature Brief
detectDepth <> Number Get console color support
to8 (xr: Any, g: Number = ø, b: Number = ø) Convert RGB to 8-color mode
to16 (xr: Any, g: Number = ø, b: Number = ø) Convert RGB to 16-color mode
to256 (xr: Any, g: Number = ø, b: Number = ø) Convert RGB to 256-color mode
to24Bit (xr: Any, g: Number = ø, b: Number = ø) Encode RGB for true color

Usage notes

to8, to16, to256 and to24Bit

The parameter xr can be an optional text representing the color in HTML format. For example, it can be provided as 'fae830'
or '#fae830' (yellow):

color <- fat.console

console <- fat.console

console.log('hey', color.to16('fae830'))

console.log('hey', color.to256('fae830'))

However, if xr is a number between 0 and 255 representing r, then the g and b parameters will be required:

console.log('hey', color.to256(250, 232, 48)) // same result

these methods may produce approximations of the original color in 8, 16 or 256 depths and not the exact true color

See also

Console library
Curses library
256 Colors

https://www.ditig.com/256-colors-cheat-sheet

console

58

console
Console input and output operations

Import

_ <- fat.console

Methods

Name Signature Brief
log (msg: Any, fg: Number = ø, bg: Number = ø): Void Print msg to stdout, with newline
print (msg: Any, fg: Number = ø, bg: Number = ø): Void Print msg to stdout, without newline
stderr (msg: Any, fg: Number = ø, bg: Number = ø): Void Print msg to stderr, with newline
input (msg: Any, mode: Text = ø): Text Print msg and return input of stdin
flush <> Void Flush stdout buffer
cls <> Void Clear stdout using ANSI escape codes
moveTo (x: Number, y: Number): Void Move cursor using ANSI escape codes
isTTY <> Boolean Check if stdout a terminal device
showProgress (label: Text, fraction: Number): Void Render progress bar, fraction 0 to 1

the methods log, stderr and input ensure thread safety in asynchronous scenarios

Usage notes

output

By default, stdout and stderr both print to the console. The foreground color (fg) and background color (bg) parameters
are optional.

colors are automatically suppressed if the output buffer is not a TTY

input

The optional mode parameter accepts the following values:

'plain', plain input (no readline cursor, no history)
'quiet', like plain mode, but without feedback
'secret', special mode for password input
null (default), with readline and input history

See also

Color library
Curses library

curses

59

curses
Terminal-based user interface

although the inspiration is acknowledged, FatScript has it's own way of approaching terminal UI which differs in many
ways from the original curses library

Import

_ <- fat.curses

Methods

Name Signature Brief
box (p1: Scope, p2: Scope): Void Draw square from pos1 to pos2
fill (p1: Scope, p2: Scope, p: Text = ' '): Void Fill from pos1 to pos2 with p
clear <> Void Clear screen buffer
refresh <> Void Render screen buffer
getMax <> Scope Return screen size as x, y
printAt (pos: Scope, msg: Any, width: Number = ø): Void Print msg at { x, y } pos
makePair (fg: Number = ø, bg: Number = ø): Number Create a color pair
usePair (pair: Number): Void Apply color pair
frameTo (cols: Number, rows: Number) Align view to screen center
setMouse (enabled: Boolean): Void Mouse tracking with readKey
readKey <> Text Return key pressed
readText (pos: Scope, width: Number, prev: Text = ø): Text Start a text box input
flushKeys <> Void Flush input buffer
endCurses <> Void Exit curses mode

positions (pos) are of form { x: Number, y: Number }

the methods in this library do not ensure thread safety in asynchronous scenarios, use either the main thread or a single
worker to render console updates

Usage notes

Any method of this library, except getMax and endCurses, will start curses mode if not yet started. Note that methods such
as log, stderr and input from console library will implicitly call endCurses. However, moveTo, print and flush
will not change the output mode, and can be paired with curses methods, which can be useful in some circumstances.

The letters x and y stand for column and row respectively when calling printAt, where (0, 0) is the upper-left corner and the
result of getMax is the just the first coordinate outside the lower-right corner.

special characters on curses only work if a UTF-8 locale can be set

makePair

You can import the color library to use color names and create a combination of foreground and background (pair). Pass null
to apply the default color to the desired parameter.

usePair

The input of this method should be a color pair created with makePair method. It leaves this pair enabled until you call it
again with a different pair.

readKey

This method is non-blocking and returns null if stdin is empty, otherwise it will return one character at a time.

curses

60

Special keys may be detected and return keywords such as:

arrow keys:
up
down
left
right

edit keys:
delete
backspace
enter
space
tab
backTab (shift+tab)

control keys:
pageUp
pageDown
home
end
insert
esc

other:
resize (terminal window was resized)
mouse:button:column:row:isRelease (when tracking mouse events)

the correct detection of keys can depend on the context or platform

readText

Enters text capture mode using an area demarcated by position and width of the text box. If the text is larger than the space, an
automatic text scroll is performed. The full text is returned when enter or tab is pressed, however, if esc is pressed, null
is returned.

See also

MouseEvent type
Color library
Console library

enigma

61

enigma
Cryptography, hash and UUID methods

Import

_ <- fat.enigma

Standard methods

These methods are available on all fry builds. Although derive, encrypt, and decrypt help create "non-human-
readable" ciphertext, they are not considered cryptographically secure. DO NOT use them alone to protect sensitive data!

Name Signature Brief
getHash (msg: Text): Number Compute a 32-bit hash of text
genUUID <> Text Generate a UUID (version 4)
genKey (len: Number): Text Generate a random key
derive (secret: Text, salt: Text, iter: Number): Text Basic key derivation function
encrypt (msg: Text, key: Text = ø): Text Encrypt message using key
decrypt (msg: Text, key: Text = ø): Text Decrypt message using key

OpenSSL methods

These methods are cryptographically safe and only available in builds that include OpenSSL support. They provide robust
tools for handling encryption, decryption, hashing, and key derivation with high-security standards.

Name Signature Brief
digest (data: Chunk, algo: Text = 'sha256'): HugeInt Compute a secure hash
bytes (len: Number): Chunk Generate random bytes
pbkdf2 (secret: Text, salt: Text, iter: Number, algo: Text): HugeInt Derive key using PBKDF2
hmac (data: Chunk, key: Chunk, algo: Text): HugeInt Compute auth-code
encryptAES (data: Chunk, key: Chunk): Chunk Encrypt data with AES-256 key
decryptAES (data: Chunk, key: Chunk): Chunk Decrypt AES-256 encrypted data

Usage notes

getHash

A 32-bit hash is sufficient to protect against data corruption in up to 100kb. Fry uses FNV1A_Jesteress, which is one of the
fastest and "good enough" hash algorithm for "long" strings.

genUUID

A UUID, or Universally Unique Identifier, is a 128-bit number used to identify objects or entities in computer systems. The
implementation generates random UUIDs following the format of version 4 RFC 4122 specification, though it does not strictly
adhere to cryptographically secure randomness standards.

genKey

Generates a random key using the Base64 alphabet.

derive (unsafe)

This deterministic key derivation function outputs a 32-character string using the Base64 alphabet. While it may appear to offer
192 bits of entropy, the effective entropy is significantly lower due to the underlying hashing function.

Note: The original intention of this function is also key stretching. It is designed to be used in conjunction with the
encrypt and decrypt functions, providing an additional layer of processing for the keys used in these cryptographic

enigma

62

operations. However, as the method does not provide robust cryptographic security by itself, it is recommended to use
more secure key derivation methods for applications that require high standards of data protection.

encrypt/decrypt (unsafe)

These functions can be used with or without a specified key (blank for default key). They employ a simple XOR operation
combined with a control hash and are encoded in Base64. These methods are not cryptographically secure and should not be
used for protecting sensitive data, unless combined with a one-time pad.

Additional details for OpenSSL methods

digest

Supports multiple hash algorithms including sha1, sha224, sha256, sha384, sha512, sha3_224, sha3_256, sha3_384, sha3_512,
allowing flexibility depending on security requirements.

bytes

Ideal for creating high-entropy cryptographic keys and initialization vectors (IVs).

pbkdf2

Utilizes a password, salt, and specified number of iterations along with a cryptographic hash function to produce a robust
encryption key.

hmac

Ensures data integrity and authenticity using a secret key and the specified hash function.

encryptAES/decryptAES

Operate using AES-256-CCM mode, providing confidentiality and authenticity. The key should be precisely 32 bytes long,
obtained from a secure source like the pbkdf2 function, this can typically be achieved like:

key: HugeInt = enigma.pbkdf2(...)

encryptionKey = key.toChunk.fit(32)

https://en.wikipedia.org/wiki/One-time_pad

failure

63

failure
Error handling and exception management

Import

_ <- fat.failure

Methods

Name Signature Brief
trap <> Void Apply generic error handler
trapWith (handler: Method): Void Set a handler for errors in context
untrap <> Void Unset error handler in context
noCrash (unsafe: Method): Any Continue on error within unsafe method

Usage notes

When an error is raised if an error handler is found, seeking from the inner execution context to the outer, the handler wrapping
the failure is automatically invoked with that error as argument, and the calling context is exited with return value of the error
handler.

trapWith

This method binds an error handler to the context of the calling site, e.g. when used inside a method it will protect the logic
executed inside the body of that method, and if an error occurs, the method will exit returning whatever is returned by the error
handler itself.

you may need to ensure that your error handler will also return a valid type for that context

Example

Define an error handler that prints the error and exits:

console <- fat.console

system <- fat.system

sdk <- fat.sdk

simpleErrorHandler = (error) -> {

 console.log(error)

 sdk.printStack(10)

 system.exit(system.failureCode)

}

Finally, use trapWith method to assign the error handler:

failure <- fat.failure

failure.trapWith(simpleErrorHandler)

Trap it!

You can handle expected errors or pass through the unexpected:

failure <- fat.failure

_ <- fat.type.Error

MyError = Error

errorHandler = (e): Number -> e >> {

 MyError => 0 # resolve (expected)

 _ => e # pass through (unexpected)

}

failure

64

unsafeMethod = (n) -> {

 failure.trapWith(errorHandler)

 n < 10 ? MyError('arg is less than ten')

 n - 10

}

In this case the program will not crash if you call unsafeMethod(5), but if you comment out the trapWith line, you will
see it crashing with MyError.

See also

Error (syntax)
Error prototype extensions
Flow control

file

65

file
File input and output operations

Import

_ <- fat.file

Type contributions

Name Signature Brief
FileInfo (modTime: Epoch, size: Text) File metadata

Methods

Name Signature Brief
basePath <> Text Extract path where app was called
resolve (path: Text): Text Return canonical name for path
exists (path: Text): Boolean Check file exists on provided path
read (path: Text): Text Read file from path (text mode)
readBin (path: Text): Chunk Read file from path (binary mode)
readSys (path: Text): Text Read system/virtual file from path
write (path: Text, src): Void Write src to file and return success
append (path: Text, src): Void Append to file and return success
remove (path: Text): Void Remove files and directories
isDir (path: Text): Boolean Check if path is a directory
mkDir (path: Text, safe: Boolean) Create a directory
lsDir (path: Text): List/Text Get list of files in a directory
stat (path: Text): FileInfo Get file metadata

starting with version 3.3.0, in case of an exception, all methods in the file library raise FileError instead of
returning a boolean or null value, providing a more consistent interface with the other standard libraries

Usage notes

write/append

These methods will intelligently handle different data types to optimize file output. For the Chunk type, they automatically
write in binary mode, and for the Text type, as plain text. For other types, they implicitly stringify the src value before
writing, ensuring all values are handled gracefully.

remove

The behavior is similar to rm -r, removing files and directories recursively.

starting with version 3.0.1, symbolic links are not followed; in version 3.0.0, symbolic links were followed; previous
versions of fry did not implement recursive deletion

mkDir

The behavior is similar to mkdir -p, creating intermediate directories when necessary.

If safe is set to true, the new directory is assigned 0700 permissions, offering more protection, instead of the default 0755
permissions, which offer less protection.

read vs. readSys

file

66

The read method is optimized for reading regular files with predictable sizes, using stat to allocate memory efficiently
before reading the entire file. In contrast, readSys is designed for system or virtual files from directories like /proc or
/sys, where file sizes cannot be determined beforehand. It adjusts memory allocation dynamically during reading.

See also

Failure library
Recode library

http

67

http
HTTP handling framework

Import

_ <- fat.http

Route

A route is a structure used to map HTTP methods to certain path patterns, specifying what code should be executed when a
request comes in. Each route can define a different behavior for each HTTP method (POST, GET, PUT, DELETE).

Constructor

Name Signature Brief
Route (path: Text, post: Method, get: Method, put: Method, delete: Method) Constructs a Route object

each implemented method receives an HttpRequest as argument and shall return an HttpResponse object

HttpRequest

An HttpRequest represents an HTTP request message. This is what your server receives from a client when it makes a
request to your server.

Constructor

Name Signature Brief
HttpRequest (method: Text, path: Text, headers: List, params: Scope, body: Any) Constructs an HttpRequest object

the items params and body may be omitted depending on the request received

HttpResponse

An HttpResponse represents an HTTP response message. This is what a server sends back to the client in response to an
HTTP request.

Constructor

Name Signature Brief
HttpResponse (status: Number, headers: List/Text, body: Any) Constructs an HttpResponse object

for client mode responses, body will be provided as Text if a textual MIME type can be found in the headers,
otherwise it will be provided as Chunk

Methods

Name Signature Brief
setHeaders (headers: List): Void Set headers of requests
post (url: Text, body, wait): HttpResponse Create/post body to url
get (url: Text, wait): HttpResponse Read/get from url
put (url: Text, body, wait): HttpResponse Update/put body to url
delete (url: Text, wait): HttpResponse Delete on url
setName (name: Text): Void Set user agent/server name
verifySSL (enabled: Boolean): Void SSL configuration (client mode)
setSSL (certPath: Text, keyPath: Text): Void SSL configuration (server mode)
listen (port: Number, routes: List/Route, maxMs) Endpoint provider (server mode)

http

68

body: Any and wait: Number are always optional parameters, being that if body does not fall under Text or
Chunk, it will be automatically converted to JSON during the send process, and wait is the maximum waiting time and
the default is 30,000ms (30 seconds)

verifySSL is enabled by default for the client mode

setSSL may not be available, case the system doesn't have OpenSSL

Usage notes

Client mode

In the HttpResponse.body, you may need to explicitly parse a JSON response to Scope using the fromJSON method.
To post a native type as JSON, you can encode it using the toJSON method; however, this is not strictly necessary, as it will be
done implicitly. Both methods are available in the fat.recode library.

If headers are not set, the default Content-Type header for Chunk will be application/octet-stream, for Text
will be text/plain; charset=UTF-8 and for other types, it will be application/json; charset=UTF-8 (due
to implicit conversion).

You can set custom request headers like so:

http <- fat.http

url = ...

token = ...

body = ...

http.setHeaders([

 "Accept: application/json; charset=UTF-8"

 "Content-Type: application/json; charset=UTF-8"

 "Authorization: Bearer " + token # custom header

])

http.post(url, body)

setting headers will completely replace previous list with new list

When performing async requests, you may need to call setHeaders, setName, and configure verifySSL within each
Worker, as these settings are local to each thread.

Server mode

Handling HTTP Responses

You can define the maxMs optional parameter, when calling listen to restrict how long the server will wait for each request
to transfer its contents (inbound connection), returning status 408 if exceeded.

The FatScript server automatically handles common HTTP status codes such as 200, 400, 404, 405, 408, 500, and 501. Being
200 the default when constructing an HttpResponse object.

In addition to the common status codes, you can also explicitly return other status codes, such as 201, 202, 203, 204, 205, 301,
401, and 403, by specifying the status code in the HttpResponse object, for example: HttpResponse(status =
401). For all codes mentioned here, the server provides default plain text bodies. However, you have the option to override
these defaults and provide your own custom response bodies when necessary.

By automatically handling these status codes and providing default response bodies, the FatScript server simplifies the
development process while still allowing you to have control over the response content when needed.

if the status code doesn't belong to any of the above, the server will return a 500 code

See an example of a simple file HTTP server:

_ <- fat.std

adapt to content location

directory = '/home/user/contentFolder'

http

69

restrict to some extensions only

mediaTypesByExtension = {

 htm = html = 'text/html'

 js = 'application/javascript'

 json = 'application/json'

 css = 'text/css'

 md = 'text/markdown'

 xml = 'application/xml'

 csv = 'text/csv'

 txt = 'text/plain'

 svg = 'image/svg+xml'

 rss = 'application/rss+xml'

 atom = 'application/atom+xml'

 png = 'image/png'

 jpg = jpeg = 'image/jpeg'

 gif = 'image/gif'

 ico = 'image/x-icon'

 webp = 'image/webp'

 woff = 'font/woff'

 woff2 = 'font/woff2'

}

routes: List/Route = [

 Route(

 '*'

 get = (request: HttpRequest): HttpResponse -> {

 path = file.resolve(directory + request.path) # sanitized path

 type = path & path.startsWith(directory) # jailed access

 ? mediaTypesByExtension(path.split('.')(-1))

 path.isEmpty => HttpResponse(status = 404) # not found

 type.isEmpty => HttpResponse(status = 403) # forbidden

 _ => HttpResponse(

 status = 200

 headers = ['Content-Type: {type}']

 body = file.readBin(path)

)

 }

)

]

http.listen(8080, routes)

use http.listen(0, routes) to start a server with an auto-assigned port number, and check the actual port
assigned to the server through the $port embedded command

math

70

math
Mathematical operations and functions

Import

_ <- fat.math

Constants

e, natural logarithm constant 2.71...
maxInt, 9007199254740992
minInt, -9007199254740992
pi, ratio of circle to its diameter 3.14...

read more about number precision in FatScript

Basic functions

Name Signature Brief
abs (x: Number): Number Return absolute value of x
ceil (x: Number): Number Return smallest integer >= x
floor (x: Number): Number Return largest integer <= x
isInf (x: Number): Boolean Return true if x is infinity
isNaN (x: Any): Boolean Return true if x is not a number
logN (x: Number, base: Number = e): Number Return logarithm of x
random <> Number Return pseudo-random, where 0 <= n < 1
sqrt (x: Number): Number Return the square root of x
round (x: Number): Number Return the nearest integer to x

Trigonometric functions

Name Signature Brief
sin (x: Number): Number Return the sine of x
cos (x: Number): Number Return the cosine of x
tan (x: Number): Number Return the tangent of x
asin (x: Number): Number Return the arc sine of x
acos (x: Number): Number Return the arc cosine of x
atan (x: Number, y = 1): Number Return the arc tangent of x, y
radToDeg (r: Number): Number Convert radians to degrees
degToRad (d: Number): Number Convert degrees to radians

Hyperbolic functions

Name Signature Brief
sinh (x: Number): Number Return the hyperbolic sine of x
cosh (x: Number): Number Return the hyperbolic cosine of x
tanh (x: Number): Number Return the hyperbolic tangent of x

Statistical functions

Name Signature Brief
mean (v: List/Number): Number Return the mean of a vector
median (v: List/Number): Number Return the median of a vector

math

71

Name Signature Brief

sigma (v: List/Number): Number Return the standard deviation of a vector
variance (v: List/Number): Number Return the variance of a vector
max (v: List/Number): Number Return maximum value in vector
min (v: List/Number): Number Return the minimum value in vector
sum (v: List/Number): Number Return the sum of vector

Other functions

Name Signature Brief
fact (x: Number): Number Return the factorial of x
exp (x: Number): Number Return e raised to the power of x
sigmoid (x: Number): Number Return the sigmoid of x
relu (x: Number): Number Return the ReLU of x

Example

math <- fat.math # named import

math.abs(-52) # yields 52

See also

Number (syntax)
Number prototype extensions

recode

72

recode
Data conversion between various formats

Import

_ <- fat.recode

type package is automatically imported with this import

Variables

These settings can be used to adjust the behavior of the processing functions:

csvSeparator, default is , (comma)
csvQuote, default is " (double quote)

Base64 functions

Name Signature Brief
toBase64 (data: Chunk): Text Encode binary chunk to base64 text
fromBase64 (b64: Text): Chunk Decode base64 text to original format

JSON functions

Name Signature Brief
toJSON (val: Any): Text Encode JSON from native types
fromJSON (json: Text): Any Decode JSON to native types

with toJSON the native types such as HugeInt, Method, and Chunk will translate into null, while Errors will be
converted to text

URL functions

Name Signature Brief
toURL (text: Text): Text Encode text to URL escaped text
fromURL (url: Text): Text Decode URL escaped text to original format
toFormData (data: Scope): Text Encode scope to URL encoded Form Data
fromFormData (data: Text): Scope Decode URL encoded Form Data to scope

CSV functions

Name Signature Brief
toCSV (header: List/Text, rows: List/Scope): Text Encode CSV from rows
fromCSV (csv: Text): List/Scope Decode CSV into rows

starting with version 4.x.x CSV methods support automatic quoting, escaped quotes, separators and new lines within
quotes

RLE functions

Name Signature Brief
toRLE (chunk: Chunk): Chunk Compress to RLE schema
fromRLE (chunk: Chunk): Chunk Decompress from RLE schema

Frost and hot copies

recode

73

Name Signature Brief
toFrostCopy (item: Any): Any Creates immutable copy of item
toHotCopy (item: Any): Any Creates mutable copy of item

toFrostCopy ensures immutability, ideal for capturing "safe" nested data snapshots, while toHotCopy allows data to
be heated up again, useful where frozen data needs further processing

Other functions

Name Signature Brief
inferType (val: Text): Any Convert text to void/boolean/number
minify (src: Text): Text Minifies FatScript source code

minify will replace any $break statements (debugger breakpoint) with ()

To disable the type inference provided by inferType for fromFormData and fromCSV, you can override it globally by
using recode.inferType = -> _ after importing fat.recode, or to reactivate it use recode.inferType = val
-> $inferType.

See also

Type package
SDK library

sdk

74

sdk
Fry's software development kit utilities

a special library that exposes some of the inner elements of fry interpreter

Import

_ <- fat.sdk

Methods

Name Signature Brief
ast (_): Void Print abstract syntax tree of node
stringify (_): Text Serialize node into JSON-like text
eval (_): Any Interpret text as FatScript program
getVersion <> Text Return fry version
printStack (depth: Number): Void Print execution context stack trace
readLib (ref: Text): Text Return fry library source code
typeOf (_): Text Return type name of node
getTypes <> List Return info about declared types
getDef (name: Text): Any Return type definition by name
getMeta <> Scope Return interpreter's metadata
setKey (key: Text): Void Set key for obfuscated bundles
setMem (n: Number): Void Set memory limit (node count)
runGC <> Number Run GC, return elapsed in milliseconds
quickGC <> Number Run single GC iteration and return ms

Usage notes

stringify

While recode.toJSON outputs strictly valid JSON, stringify is more lax. It is capable of exporting HugeInt as
hexadecimal numbers (e.g., 0x123abc), Chunk as Base64 encoded, and other types may also have representations more
informative than just null. These representations are designed to allow a richer export for the FatScript environment and are
not intended for JSON-compliant serialization.

readLib

_ <- fat.sdk

_ <- fat.console

print(readLib('fat.extra.Date')) # prints the Date library implementation

readLib cannot see external files, but read from file lib can

setKey

Use preferably on .fryrc file like so:

_ <- fat.sdk

setKey('secret') # will encode and decode bundles with this key

See more about obfuscating.

setMem

Use preferably on .fryrc file like so:

sdk

75

_ <- fat.sdk

setMem(5000) # ~2mb

Choosing between full and quick GC

Most simple scripts in FatScript won't need to worry about memory management, as the default settings are designed to provide
ample memory capacity and efficient automatic behavior from the start. Generally, the best way to optimize performance is by
simply adjusting the memory limit. In some rare cases, such as a game loop or complex iterative processes, you may benefit
from explicitly calling the GC.

The quickGC method performs a quick and less exhaustive cleanup, making it suitable for scenarios where some flexibility in
memory allocation is acceptable. On the other hand, runGC ensures a complete and deterministic garbage collection, but it can
result in longer runtimes depending on factors such as the size and complexity of the memory graph. However, quickGC may
lead to the accumulation of unclaimed memory, making it less effective in certain contexts. The best way to determine the most
appropriate option is to perform comparative tests on your application, simulating real-use scenarios.

run your script with the -c flag to benchmark its execution

See more about memory management.

See also

Recode library

smtp

76

smtp
SMTP handling framework

this library provides a simple interface for configuring SMTP parameters and sending emails

Import

_ <- fat.smtp

Types

The smtp library introduces the ContactInfo type.

ContactInfo

The ContactInfo type represents an email contact, which can include an optional name along with the email address.

Constructor

Name Signature Brief
ContactInfo (email: Text, name: Text = '') Construct a ContactInfo object

email: The email address of the contact.
name (optional): The name of the contact.

Methods

config

Configures the SMTP settings.

Parameter Type Description
from ContactInfo An object representing the sender.
server Text The SMTP server URL/address.
username Text The username for SMTP authentication.
password Text The password for SMTP authentication.
useSSL Boolean Use SSL/TLS (defaults to true).

raises an error if the configuration fails

send

Sends an email.

Parameter Type Description
to List/ContactInfo A list of recipients.
subject Text The subject of the email.
body Text The body of the email.

returns the message UUID on success

Usage notes

Example:

smtp <- fat.smtp

smtp.config(

 from = ContactInfo('sender@example.com', 'Sender Name')

smtp

77

 server = 'smtps://smtp.example.com:port'

 username = 'your_username'

 password = 'your_password'

)

smtp.send(

 to = [

 ContactInfo('recipient1@example.com', 'Recipient One')

 ContactInfo('recipient2@example.com') # name is optional

]

 subject = 'Test Email'

 body = 'This is a test email sent using fat.smtp.'

)

SSL/TLS is enabled by default in the SMTP configuration. If your SMTP server requires SSL/TLS, no additional configuration
is needed. However, if your server does not support SSL/TLS, you can disable it by setting useSSL to false when calling
config.

SMTP in Web Build

When using fry built with Emscripten (for example, when using FatScript Playground), there is no support for this library.

https://fatscript.org/playground

system

78

system
System-level operations and information

Import

_ <- fat.system

Alias

ArgValues: a list of arguments (Text) from command line

Types

Name Signature Brief
CommandResult (code: ExitCode, out: Text) Return type of capture

Constants

successCode, 0: ExitCode
failureCode, 1: ExitCode

Methods

Name Signature Brief
args <> ArgValues Return list of args passed from shell
exit (code: Number): * Exit program with provided exit code
getEnv (var: Text): Text Get env variable value by name
shell (cmd: Text): ExitCode Execute cmd in shell, return exit code
capture (cmd: Text): CommandResult Capture the output of cmd execution
fork (args: List/Text, out: Text = ø) Start background process, return PID
kill (pid: Number): Void Send SIGTERM to process by PID
getLocale <> Text Get current locale setting
setLocale (_: Text): Number Set current locale setting
getMacId <> Text Get machine identifier (MAC address)
blockSig (enabled: Boolean): Void Block SIGINT, SIGHUP and SIGTERM

Usage notes

Heads Up!

It is important to exercise caution and responsibility when using the getEnv, shell, capture, fork and kill methods.
The system library provides the capability to execute commands directly from the operating system, which can introduce
security risks if not used carefully.

To mitigate potential vulnerabilities, avoid using user input directly in constructing commands passed to these methods. User
input should be validated to prevent command injection attacks and other security breaches.

Handling signals

When a Ctrl+C interruption occurs, the FatScript interpreter's main thread captures the signal and initiates a cleanup process.
During this process, if it detects any running Workers, it will forcibly terminate them to prevent the application from hanging.

For applications requiring more refined control over the shutdown process, FatScript provides an option to block the default
signal handling by setting system.blockSig(true). When enabled, the interpreter will not capture Ctrl+C. This requires
you to implement your own termination mechanisms, possibly via curses.readKey or another method.

system

79

Other Limitations (multithreading)

While the methods in this library support a variety of programming tasks, they are not optimized for interleaved usage within
asynchronous Workers. When initiating processes from within threads, opt for shell/capture methods, or exclusively
use fork/kill. Mixing these two method pairs in multithreaded applications can result in unpredictable behavior.

on each call, shell/capture will set SIGCHLD to its default behavior, while fork will ignore this signal to try to
avoid zombie processes

fork

The out parameter allows redirecting the standard output (stdout) to a specified output file. If you wish to discard this
output, you can use "/dev/null" as an argument.

get/set locale

The fry interpreter will attempt to initialize LC_ALL locale to C.UTF-8 and if that locale is not available on the system tries
to use en_US.UTF-8, otherwise, the default locale will be used.

See more about locale names.

locale configuration applies only to application, and is not persisted after fry exits

https://www.gnu.org/software/libc/manual/html_node/Locale-Names.html

time

80

time
Time and date manipulation

Import

_ <- fat.time

number type is automatically imported with this import

Methods

Name Signature Brief
setZone (offset: Number): Void Set timezone in milliseconds
getZone <> Number Get current timezone offset
now <> Epoch Get current UTC in Epoch
format (date: Text, fmt: Text = ø): Epoch Convert Epoch to date format
parse (date: Text, fmt: Text = ø): Epoch Parse date to Epoch
wait (ms: Number): Void Wait for milliseconds (sleep)
getElapsed (since: Epoch): Text Return elapsed time as text

Usage notes

Epoch

In FatScript time is represented as an arithmetic type so that you can do maths.

You can get the elapsed time between time1 and time2 like:

elapsed = time2 - time1

You can also check if time2 happens after time1, simply like:

time2 > time1

format

Formats text date as "%Y-%m-%d %H:%M:%S.milliseconds" (default), when fmt is omitted.

milliseconds can only be transformed in default format, otherwise the precision is up to seconds

fmt parameter

The format specification is a text containing a special character sequence called conversion specifications, each of which is
introduced by a '%' character and terminated by some other character known as a conversion specifier. All other characters are
treated as ordinary text.

Specifier Meaning
%a Abbreviated weekday name
%A Full weekday name
%b Abbreviated month name
%B Full month name
%c Date/Time in the format of the locale
%C Century number [00-99], the year divided by 100 and truncated to an integer
%d Day of the month [01-31]
%D Date Format, same as %m/%d/%y
%e Same as %d, except single digit is preceded by a space [1-31]
%g 2 digit year portion of ISO week date [00,99]

time

81

Specifier Meaning

%F ISO Date Format, same as %Y-%m-%d
%G 4 digit year portion of ISO week date
%h Same as %b
%H Hour in 24-hour format [00-23]
%I Hour in 12-hour format [01-12]
%j Day of the year [001-366]
%m Month [01-12]
%M Minute [00-59]
%n Newline character
%p AM or PM string
%r Time in AM/PM format of the locale
%R 24-hour time format without seconds, same as %H:%M
%S Second [00-61], the range for seconds allows for a leap second and a double leap second
%t Tab character
%T 24-hour time format with seconds, same as %H:%M:%S
%u Weekday [1,7], Monday is 1 and Sunday is 7
%U Week number of the year [00-53], Sunday is the first day of the week

%V
ISO week number of the year [01-53]. Monday is the first day of the week. If the week containing January 1st has
four or more days in the new year then it is considered week 1. Otherwise, it is the last week of the previous year,
and the next year is week 1 of the new year.

%w Weekday [0,6], Sunday is 0
%W Week number of the year [00-53], Monday is the first day of the week
%x Date in the format of the locale
%X Time in the format of the locale
%y 2 digit year [00,99]
%Y 4-digit year (can be negative)
%z UTC offset string with format +HHMM or -HHMM
%Z Time zone name
%% % character

Under the hood format uses C's strftime and parse uses C's strptime, but the above format specification table applies pretty
much both ways.

https://man7.org/linux/man-pages/man3/strftime.3.html
https://man7.org/linux/man-pages/man3/strptime.3.html

type._

82

type._
Prototype extensions for native types:

Void
Boolean
Number
HugeInt
Text
Method
List
Scope
Error
Chunk

FatScript does not load these definitions automatically into global scope, therefore you have to explicitly import those
where needed

Importing

If you want to make all of them available at once you can simply write:

_ <- fat.type._

...or import one-by-one, as needed, e.g.:

_ <- fat.type.List

Common trait

All types on this package support the following prototype methods:

apply (constructor)
isEmpty
nonEmpty
size
toText

Except for Void, all other types implement also the method freeze.

See also

Types (syntax)

Void

83

Void
Void prototype extensions

Import

_ <- fat.type.Void

Constructor

Name Signature Brief
Void (val: Any) Return null, just ignore argument

Prototype members

Name Signature Brief
isEmpty <> Boolean Return true, always
nonEmpty <> Boolean Return false, always
size <> Number Return 0, always
toText <> Text Return 'null' as text

Example

_ <- fat.type.Void

x.isEmpty # true, since x has not been declared

See also

Void (syntax)
Type package

Boolean

84

Boolean
Boolean prototype extensions

Import

_ <- fat.type.Boolean

Constructor

Name Signature Brief
Boolean (val: Any) Coerce value to boolean

Prototype members

Name Signature Brief
isEmpty <> Boolean Return true if false
nonEmpty <> Boolean Return false if true
size <> Number Return 1 if true, 0 if false
toText <> Text Return 'true' or 'false' as text
freeze <> Void Make the value immutable

Examples

_ <- fat.type.Boolean

~ x = true

x.isEmpty # false, since x is true

x.nonEmpty # true, since x is not empty

x.size # 1, since true maps to size 1

x.toText # 'true', converts boolean to text

x.freeze

x = false # raises an error, x is immutable after freeze

Boolean('false') # yields true, because text is non-empty

Boolean('') # yields false, because text is empty

note that the constructor does not attempt to convert value from text, which is consistent with flow control evaluations,
and you can use a simple case if you need to make conversion from text to boolean

See also

Boolean (syntax)
Type package

Number

85

Number
Number prototype extensions

Import

_ <- fat.type.Number

Aliases

Epoch: unix epoch time in milliseconds
ExitCode: exit status or return code
Millis: duration in milliseconds

Constructor

Name Signature Brief
Number (val: Any) Text to number or collection size

performs the conversion from text to number assuming decimal base

Prototype members

Name Signature Brief
isEmpty <> Boolean Return true if zero
nonEmpty <> Boolean Return true if non-zero
size <> Number Return absolute value, same as math.abs
toText <> Text Return number as text
freeze <> Void Make the value immutable
format (fmt: Text): Text Return number as formatted text
truncate <> Number Return number discarding decimals

Example

_ <- fat.type.Number

x = Number('52') # number: 52

x.toText # text: '52'

x.format('.2') # text: '52.00'

format

The format method is used to convert numbers into strings in various ways. The basic structure of a format specifier is %
[flags][width][.precision][type]. Here's what each of these components mean:

flags are optional characters that control specific formatting behavior. For example, 0 can be used for zero-padding
and - for left-justification.

width is an integer that specifies the minimum number of characters to be printed. If the value to be printed is shorter
than this number, the result is padded with blank spaces or zeros, depending on the flag used.

precision is an optional number following a . that specifies the number of digits to be printed after the decimal
point.

type is a character that specifies how the number should be represented. The common types are f (fixed-point
notation), e (exponential notation), g (either fixed or exponential depending on the magnitude of the number), and a
(hexadecimal floating-point notation).

Examples:

Number

86

%5.f: This will print the number with a total width of 5 characters, with no digits after the decimal point (because the
precision is f, which means fixed-point, but no number follows the dot). It will be right-justified because no - flag is
used.

%05.f: Similar to the above, but because the 0 flag is used, the empty spaces will be filled with zeros.

%8.2f: This will print the number with a total width of 8 characters, with 2 digits after the decimal point.

%-8.2f: Similar to the above, but the number will be left-justified because of the - flag.

%.2e: This will print the number using exponential notation, with 2 digits after the decimal point.

%.2a: This will print the number using hexadecimal floating-point notation, with 2 digits after the hexadecimal point.

%.2g: This will print the number in either fixed-point or exponential notation, depending on its magnitude, with a
maximum of 2 significant digits.

if the % symbol is not present, fmt is automatically evaluated as %<fmt>f

See also

Number (syntax)
Math library
Type package

HugeInt

87

HugeInt
HugeInt prototype extensions

Import

_ <- fat.type.HugeInt

Constructor

Name Signature Brief
HugeInt (val: Any) Parse number or text to HugInt

when converting from Text, the input is interpreted as a hexadecimal representation

Prototype members

Name Signature Brief
isEmpty <> Boolean Return true if zero
nonEmpty <> Boolean Return true if non-zero
size <> Number Return number of bits to represent
toText <> Text Return number as hexadecimal text
freeze <> Void Make the value immutable
modExp (exp: HugeInt, mod: HugeInt): HugeInt Return modular exponentiation
toNumber <> Number Converts to number (with loss)
toChunk <> Chunk Encodes to binary representation

Examples

_ <- fat.type.HugeInt

Converting HugeInt

x = 0x1f4 # 500 in hexadecimal

x.toText # returns '1f4'

x.toNumber # returns 500

x.size # 9 bits are required to represent 500

Modular exponentiation

y = 0x3 # 3 in hexadecimal

z = 0x5 # 5 in hexadecimal

mod = 0x7 # 7 in hexadecimal

y.modExp(z, mod) # 0x5, equivalent to (3^5) % 7

Usage notes

Conversion from Number to HugeInt

The maximum allowed value for Number conversion is 2^53.
Attempting to pass a value greater than 2^53 will raise a ValueError.

Conversion from HugeInt to Number

Values up to 2^1023 - 1 can be converted, though some precision loss may occur for very large values.
If the value exceeds this limit, the result will be infinity. This can be verified using the isInf method from the
math library.

the math library also provides the maxInt value, which serves to assess potential precision loss; if a number is less than
maxInt, its conversion from HugeInt is considered safe without precision loss

HugeInt

88

See also

HugeInt (syntax)
Type package

Text

89

Text
Text prototype extensions

Import

_ <- fat.type.Text

Constructor

Name Signature Brief
Text (val: Any) Coerces value to text, same as .toText

Prototype members

Name Signature Brief
isEmpty <> Boolean Return true if length is zero
nonEmpty <> Boolean Return true if non-zero length
size <> Number Return text length
toText <> Text Return self value
freeze <> Void Make the value immutable
replace (old: Text, new: Text): Text Replace old with new (all)
indexOf (frag: Text): Number Get fragment index, -1 if absent
contains (frag: Text): Boolean Check if text contains fragment
count (frag: Text): Number Get repetition count for fragment
startsWith (frag: Text): Boolean Check if starts with fragment
endsWith (frag: Text): Boolean Check if ends with fragment
split (sep: Text): List/Text Split text by sep into list
toLower <> Text Return lowercase version of text
toUpper <> Text Return uppercase version of text
trim <> Text Return trimmed version of text
match (re: Text): Boolean Return text is match for regex
groups (re: Text): Scope Return matched regex groups
repeat (n: Number): Text Return text repeated n times
overlay (base: Text, align: Text): Text Return text overlaid on base
patch (i, n, val: Text): Text Inserts val at i, removing n chars
toChunk <> Chunk Encodes to binary representation

Example

_ <- fat.type.Text

x = 'banana'

x.size # yields 6

x.replace('nana', 'nquet'); # yields 'banquet'

regex

When defining regular expressions, prefer to use raw texts and remember to escape backslashes as needed, ensuring that the
regular expressions are interpreted correctly:

alphaOnly = "^[[:alpha:]]+$"

'abc'.match(alphaOnly) == true

ipAddress = "^([0-9]{1,3})\\.([0-9]{1,3})\\.([0-9]{1,3})\\.([0-9]{1,3})$"

'192.168.1.2'.groups(ipAddress) == {

 _0 = '192.168.1.2'

Text

90

 _1 = '192'

 _2 = '168'

 _3 = '1'

 _4 = '2'

}

the implemented dialect is POSIX regex extended

overlay

The default align value (if not provided) is 'left'. Other possible values are 'center' and 'right':

'x'.overlay('___') # 'x__'

'x'.overlay('___', 'left') # 'x__'

'x'.overlay('___', 'center') # '_x_'

'x'.overlay('___', 'right') # '__x'

the outcome is always the same size as base parameter, the text will be cut if it is longer

See also

Text (syntax)
Type package

https://en.wikibooks.org/wiki/Regular_Expressions/POSIX-Extended_Regular_Expressions

Method

91

Method
Method prototype extensions

Import

_ <- fat.type.Method

Alias

Procedure: an argument-free function that executes automatically when referenced

Constructor

Name Signature Brief
Method (val: Any) Wrap val in a method

Prototype members

Name Signature Brief
isEmpty <> Boolean Return false, always
nonEmpty <> Boolean Return true, always
size <> Number Return 1, always
toText <> Text Return 'Method' text literal
freeze <> Void Make the value immutable
arity <> Number Return method arity

See also

Method (syntax)
Type package

List

92

List
List prototype extensions

Import

_ <- fat.type.List

Constructor

Name Signature Brief
List (val: Any) Wrap val into a list

the constructor takes a single argument and wraps it into a list, if multiple arguments are passed, only the first argument is
considered, and the rest are ignored; which is consistent with FatScript's arguments handling support

Prototype members

Name Signature Brief
isEmpty <> Boolean Return true if length is zero
nonEmpty <> Boolean Return true if length is non-zero
size <> Number Return list length
toText <> Text Return 'List' as text literal
freeze <> Void Make the value immutable
join (sep: Text): Text Join list with separator into text
flatten <> List Flatten list of lists into one list
find (p: Method): Any Return first matching item or null
contains (p: Method): Boolean Check if list has match for predicate
filter (p: Method): List Return sub-list matching predicate
reverse <> List Return a reversed copy of the list
shuffle <> List Return a shuffled copy of the list
unique <> List Return a list of unique items
sort <> List Return a sorted copy of the list
sortBy (key: Any): List Return a sorted copy of the list *
indexOf (item: Any): Number Return item index, -1 if absent
head <> Any Return first item, null if empty
tail <> List Return all items, but the first
map (m: Method): List Functional utility (allows chaining)
reduce (m: Method, acc: Any): Any Functional utility
walk (m: Method): Void Apply side-effects to each item
patch (i, n, val: List): List Insert val at i, removing n items
headOption <> Option Return first item, as Option
itemOption (index: Number): Option Get item by index, as Option
findOption (p: Method): Option Search item by predicate, as Option

Example

_ <- fat.type.List

x = ['a', 'b', 'c']

x.size # yields 3

Sorting

The sort and sortBy methods implement the quicksort algorithm, enhanced with random pivot selection. This approach is
known for its efficiency, offering an average-case time complexity of O(n log n). It demonstrates high performance across most

List

93

datasets. For datasets containing duplicate values or keys, stable sorting cannot be guaranteed, and performance may degrade to
O(n^2) in the worst case, where all elements are identical or have the same key.

sortBy accepts a textual parameter for key if it is a list of Scope, or a numerical parameter if it is a list of List
(matrix), representing the index

Reducing

The reduce method in FatScript transforms a list into a single value by applying a reducer (m: Method) to each element in
sequence, starting from an initial accumulator value (acc: Any), or from the first element if no value is provided. This
method is useful for operations that involve aggregating data from a list.

Characteristics

Reducer Method: The reducer should take the current accumulator value and the current list item, returning the
updated accumulator value.

Empty List Behavior: When reduce is applied to an empty list without an initial accumulator value, it returns
null.

restriction: the reducer method will be considered invalid if it does not take two parameters or in case it defines default
values for them

Practical example

_ <- fat.type.List

sumReducer = (acc: Number, item: Number) -> acc + item

sum = [1, 2, 3].reduce(sumReducer) # yields 6

for complex data transformations or when dealing with lists of scopes, carefully structure the reducer to handle the specific
data types and desired output

See also

List (syntax)
Option type
Type package

Scope

94

Scope
Scope prototype extensions

Import

_ <- fat.type.Scope

Alias

Keyset: a list of keys (List/Text)

Constructor

Name Signature Brief
Scope (val: Any) Wrap val into a scope

Prototype members

Name Signature Brief
isEmpty <> Boolean Return true if size is zero
nonEmpty <> Boolean Return true if non-zero size
size <> Number Return number of entries
toText <> Text Return 'Scope' text literal
freeze <> Void Make the value immutable
seal <> Void Prevents scope growth
isSealed <> Boolean Check if scope is sealed
copy <> Scope Return deep copy of scope
keys <> Keyset Return list of scope keys
valuesOf (t: Type): List Get values matching type t
pick (keys: Keyset): Scope Filter scope by keys
omit (keys: Keyset): Scope Filter scope removing keys
vmap (m: Method): Scope Map values (m = v1 -> v2)
maybe (key: Text): Option Return Option wrapped value

Example

_ <- fat.type.Scope

x = { num = 12, prop = 'other' }

x.size # yields 2

See also

Scope (syntax)
Option type
Type package

Error

95

Error
Error prototype extensions

Import

_ <- fat.type.Error

Aliases

AssignError: assigning a new value to an immutable entry
AsyncError: asynchronous operation failure
CallError: a call is made with insufficient arguments
FileError: file operation failure
IndexError: index is out of list/text bounds
KeyError: the key (name) is not found in scope
SyntaxError: syntax or code structure error
TypeError: type mismatch on method call, return, or assign
ValueError: type may be okay, but content is not accepted

Constructor

Name Signature Brief
Error (val: Any) Return val coerced to text wrapped in error

Prototype members

Name Signature Brief
isEmpty <> Boolean Return true, always
nonEmpty <> Boolean Return false, always
size <> Number Return 0, always
toText <> Text Return error text val
freeze <> Void Make the value immutable

Example

_ <- fat.type.Error

Generating an error intentionally

x = Error('ops')

x.toText # yields "Error: ops"

Inadvertently causing an error

e = undeclared.item # causes a TypeError

e.toText # yields "TypeError: can't resolve scope of 'item'"

Error aliases in practice

Example of AssignError

x = 10

x = 20 # raises "AssignError: reassignment to immutable > x"

Example of IndexError

list = [1, 2, 3]

list[5] # raises "IndexError: out of bounds"

Example of CallError

add(10) # raises "CallError: nothing to call > add > ..."

See also

Error

96

Failure library
Error (syntax)
Type package

Chunk

97

Chunk
Chunk prototype extensions

Import

_ <- fat.type.Chunk

Alias

ByteArray: a sequence of bytes (Number [0-255])

Constructor

Name Signature Brief
Chunk (val: Any) Coerce value to chunk (binary)

if the value is of type Number, creates a block of n bytes initialized to zero, where n is the provided number

Prototype members

Name Signature Brief
isEmpty <> Boolean Return true if size is zero
nonEmpty <> Boolean Return true if non-zero size
size <> Number Return chunk size (in bytes)
toText <> Text Convert chunk to text format
freeze <> Void Make the value immutable
toBytes <> ByteArray Convert chunk to bytes list
toHugeInt <> HugeInt Build HugeInt from binary data
seek (frag: Chunk, offset: Number = 0): Number Return index of first match
seekByte (byte: Number, offset: Number = 0): Number Return index of first match
patch (i, n, val: Chunk): Chunk Insert val at i, removing n bytes
fit (len: Number): Chunk Tuncate to a fixed lenght

toText replaces any invalid UTF-8 sequences with U+FFFD, represented as � in UTF-8

Example

_ <- fat.type.Chunk

Creating a chunk from text

x = Chunk('example')

x.size # 7, the size in bytes

x.toText # 'example', represented as text

x.toBytes # [101, 120, 97, 109, 112, 108, 101], the UTF-8 values

x.seek(Chunk('am')) # 2, the position of the match

x.patch(1, 5, Chunk('XY')) # a new chunk 'eXYe'

Creating a chunk from a number

y = Chunk(5) # creates a chunk of 5 bytes initialized to zero

y.size # returns 5

y.toBytes # returns [0, 0, 0, 0, 0]

See also

Chunk (syntax)

Chunk

98

Type package

extra._

99

extra._
Additional types implemented in vanilla FatScript:

Date - Calendar and date handling
Duration - Millisecond duration builder
Fuzzy - Probabilistic values and fuzzy logic operations
HashMap - Quick key-value store
Logger - Logging support
Memo - Generic memoization utility
MouseEvent - Mouse event parser
Opaque - Utility for soft protection of data
Option - Encapsulation of optional value
Param - Parameter presence and type verification
Sound - Sound playback interface
Storable - Data store facilities

Importing

If you want to make all of them available at once you can simply write:

_ <- fat.extra._

...or import one-by-one, as needed, e.g.:

_ <- fat.extra.Date

Date

100

Date
Calendar and date handling

operations like addition and subtraction of days, months, and years, ensuring accurate handling of various date-related
complexities such as leap years and month-end calculations

Import

_ <- fat.extra.Date

time library, math library, Error type, Text type, List type, Number type, Duration type are automatically imported with
this import

Date Type

Date offers a comprehensive solution for managing dates, including leap years and time of day.

Properties

year: Number - Year of the date
month: Number - Month of the date
day: Number - Day of the date
tms: Millis - Time of the day in milliseconds

default value points to: 1 of January of 1970

Prototype members

Name Signature Brief
fromEpoch (ems: Epoch): Date Create a Date instance from an epoch time
isLeapYear (year: Number): Boolean Determine if a year is a leap year
normalizeMonth (month: Number): Number Normalize the month number
daysInMonth (year: Number, month: Number): Number Return number of days in month of year
isValid (year, month, day, tms): Boolean Validate the date components
truncate <> Date Truncate the time of day
toEpoch <> Epoch Convert the Date instance to epoch time
addYears (yearsToAdd: Number): Date Add years to the date
addMonths (monthsToAdd: Number): Date Add months to the date
addWeeks (weeksToAdd: Number): Date Add weeks to the date
addDays (daysToAdd: Number): Date Add days to the date

Usage examples

_ <- fat.extra.Date

Create a Date instance

myDate = Date(2023, 1, 1)

Add one year to the date

newDate = myDate.addYears(1)

Add two weeks to a date

datePlusTwoWeeks = myDate.addWeeks(2)

Create a Date from epoch time (in milliseconds)

result is influenced by current timezone, see: time.setZone

epochTime = 1672531200000

dateFromEpoch = Date.fromEpoch(Epoch(epochTime))

Date

101

Convert a date to epoch time

epochFromDate = myDate.toEpoch

Duration

102

Duration
Millisecond duration builder

in FatScript time is natively expressed in milliseconds, and this type provides a simple way to express different time
magnitudes effortlessly into Millis

Import

_ <- fat.extra.Duration

Constructor

Name Signature Brief
Duration (val: Number) Create a Millis duration converter

Prototype members

Name Signature Brief
nanos <> Millis Interpret value as nanoseconds
micros <> Millis Interpret value as microseconds
millis <> Millis Interpret value as milliseconds
seconds <> Millis Interpret value as seconds
minutes <> Millis Interpret value as minutes
days <> Millis Interpret value as days
weeks <> Millis Interpret value as weeks

Example

_ <- fat.extra.Duration

time <- fat.time

fiveSeconds = Duration(5).seconds

time.wait(fiveSeconds) # sleeps thread for 5 seconds

Fuzzy

103

Fuzzy
Probabilistic values and fuzzy logic operations

Import

_ <- fat.extra.Fuzzy

Constructor

Name Signature Brief
Fuzzy (val: Number = 0.5) Create a Fuzzy probability value

the range from 0 to 1 is ideal for values, however, higher values can still be meaningful in specific operations like
conjunction with values within the standard range

Prototype members

Name Signature Brief
isEmpty <> Boolean Check if probability is zero
nonEmpty <> Boolean Check if probability is greater than zero
size <> Number Convert fuzzy value to a percentage scale
toText <> Text Convert fuzzy value to a textual percentage
freeze <> Void Make the value immutable
and (other: Fuzzy): Fuzzy Logical AND operation with another fuzzy value
or (other: Fuzzy): Fuzzy Logical OR operation with another fuzzy value
not <> Fuzzy Logical NOT operation, inverting the chance
decide <> Boolean Decide a boolean outcome within its chance

Usage

_ <- fat.extra.Fuzzy

Creating fuzzy instances

lowChance = Fuzzy(0.25) # 25% chance

highChance = Fuzzy(0.75) # 75% chance

Applying logical operations

combinedChance = lowChance.and(highChance)

resolvedChance = combinedChance.decide # results in a boolean

Inspiration

Introducing the Fuzzy type into FatScript was inspired by the humorous meme language definition, DreamBerd, which
offers booleans that can be true, false, or maybe. Here, the maybe keyword translates to Fuzzy().decide, which can
be considered an uncommon construct for most programming languages and is analogous to flipping a coin.

Although FatScript is not as esoteric to the extent of storing booleans as "one-and-a-half bits", the concept of providing a
"funny" type that allows for modeling uncertainty was an interesting experiment and might actually prove useful in many
scenarios. It enhances the language's capabilities to handle operations involving chances and decision-making processes where
outcomes are not deterministic. The Fuzzy type is useful for scenarios requiring a nuanced approach to boolean logic,
commonly seen in gaming logic, and anywhere probabilistic decisions are needed.

See also

Boolean type
Math library

https://github.com/TodePond/DreamBerd
clbr://internal.invalid/library/math.md

HashMap

104

HashMap
An optimized in-memory key-value store, serving as a better performance replacement for default Scope implementation,
designed for handling large data sets efficiently.

the speed gains will come at the expense of more memory usage

Import

_ <- fat.extra.HashMap

Constructor

Name Signature Brief
HashMap (capacity: Number = 97) Create a HashMap with a specified capacity

the default capacity of 97 is generally efficient for up to 10,000 items

Capacity Optimization

Ideally, you should keep at most about 100 items per 'bucket' in the hash table. In this context, 'capacity' refers to the number of
buckets available for your data. Note that this implementation does not automatically adjust its size, so proper initial sizing is
crucial. The following table can help determine the optimal capacity for storing n items:

n < 5000 => 53

n < 10000 => 97

n < 20000 => 193

n < 40000 => 389

n < 80000 => 769

n < 160000 => 1543

_ => 3079

using prime numbers can help reduce collisions

These values are based on empirical tests and should be adjusted according to your specific data needs and performance goals.
Keep in mind that the relationship between capacity and performance is not entirely linear; as the number of items increases,
the benefits of further increasing the capacity diminish.

Recommendation

Although the standard FatScript Scope exhibits slower performance for insertions, it excel in data retrieval and updates,
outperforming HashMap for small collections (under ~500 items). Therefore, the benefits of using HashMap are most
noticeable in scenarios involving frequent inserts on large data sets.

Prototype members

Name Signature Brief
isEmpty <> Boolean Return true if length is zero
nonEmpty <> Boolean Return true if length is non-zero
size <> Number Return hash table length
toText <> Text Return 'HashMap/capacity' as text literal
freeze <> Void Make the value immutable
set (key: Text, value: Any): Any Set a key-value pair in the HashMap
get (key: Text): Any Get the value associated with a key
keys <> Keyset Return a list of all keys in the HashMap

Example

_ <- fat.extra.HashMap

HashMap

105

hmap = HashMap()

hmap.set('key1', 'value1')

hmap.get('key1') # yields 'value1'

hmap.keys # yields ['key1']

Logger

106

Logger
Logging support

from simple console logging to file-based logging

Import

_ <- fat.extra.Logger

console library, color library, file library, time library, sdk library, and type library are automatically imported with this
import

Logger Type

Logger provides customizable logging capabilities with various levels and formats.

Properties

level: Text (default 'debug') - Logging level
showTime: Boolean (default true) - Flag to display timestamps

valid levels: 'debug', 'info', 'warn', 'error'

Prototype members

Name Signature Brief
setLevel (level: Text) Set the logging level
setShowTime (showTime: Boolean) Toggle timestamp display in logs
asMessage (level: Text, args: Scope): Text Format log message (can be overridden)
log (msg: Any, fg: Number) Output message (can be overridden)

Logging methods

debug(_1, _2, _3, _4, _5): Logs a debug message
info(_1, _2, _3, _4, _5): Logs an info message
warn(_1, _2, _3, _4, _5): Logs a warning message
error(_1, _2, _3, _4, _5): Logs an error message

Subtypes

FileLogger

Inherits from Logger
Additional Properties:

logfile: Text (default 'log.txt') - file for logging
Overrides log to append messages to a file

Usage example

_ <- fat.extra.Logger

Create an instance with custom settings

myLogger = Logger(level = 'info', showTime = false)

Log an information message

myLogger.info('This is an informational message.')

Create a FileLogger to log messages to a file

fileLogger = FileLogger('myLog.txt')

fileLogger.info('Logged to file.')

Memo

107

Memo
Generic memoization utility
(can also create lazy values)

Import

_ <- fat.extra.Memo

Constructor

Name Signature Brief
Memo (method: Method) Create a Memo instance for a method

the arity of the memoized method should be 1 or else 0 (for lazy value)

Prototype members

Name Signature Brief
asMethod <> Method Return a memoized version of original method
call (arg: Any): Any Memoized call; cache and return results

Example

Memo is useful for optimizing functions by caching results. It stores the outcome of function calls and returns the cached result
when the same inputs occur again.

_ <- fat.extra.Memo

fib = (n: Number) -> {

 n <= 2 => 1

 _ => quickFib(n - 1) + quickFib(n - 2)

}

quickFib = Memo(fib).asMethod

quickFib(50) # 12586269025

You can now call quickFib as if you were calling fib, but with cached results for previously computed inputs.

caveat: may cause memory allocation build-up

MouseEvent

108

MouseEvent
Mouse event parser for fat.curses.readKey

Import

_ <- fat.extra.MouseEvent

Constructor

Name Signature Brief
MouseEvent (val: Text) Parses a readKey event

The MouseEvent constructor takes the following argument:

val: The text value returned from fat.curses.readKey, which is parsed to extract mouse event data (like click
type, position, and release state).

if val is not a valid mouse event, MouseEvent returns null

Prototype members

Name Signature Brief
name <> Text Get human-readable name for mouse action
code Text The code representing the mouse action
x Number The X-coordinate of the mouse
y Number The Y-coordinate of the mouse
isRelease Boolean Is the event a button release?

Event naming

The name method can return the following human-readable values based on the event code and modifier keys:

Press Actions: leftPress, middlePress, rightPress
Release Actions: leftRelease, middleRelease, rightRelease
Drag Actions: leftDrag, middleDrag, rightDrag
Scroll Actions: scrollUp, scrollDown
Modifiers: Shift+, Alt+, Ctrl+ (prefixed to the above actions)

Example

MouseEvent is useful for converting raw event strings into usable data, like mouse position and action:

_ <- fat.extra.MouseEvent

console <- fat.console

curses <- fat.curses

Enable mouse tracking

curses.setMouse(true)

Capture a curses events

(~ key = curses.readKey) == Void @ {

 # Wait for an event to happen... (no-op)

}

Parse the curses event

(mEvt = MouseEvent(key)) => {

 console.log('Mouse event:')

 console.log(' Code: {mEvt.code}')

 console.log(' X: {mEvt.x}')

 console.log(' Y: {mEvt.y}')

MouseEvent

109

 console.log(' Released: {mEvt.isRelease}')

 console.log(' Action: {mEvt.name}')

}

_ => console.log('Non-mouse event: {key}')

See also

Curses library

Opaque

110

Opaque
Utility for soft protection of data

Import

_ <- fat.extra.Opaque

Scope type is automatically imported along with this import

Prototype

This library introduces the Opaque type, designed as a utility for encapsulating data with soft protection. It provides a wrapper
around a Scope, preventing direct access to the underlying structure when serializing while allowing controlled with its
members.

The Opaque type extends the Scope type, inheriting all its members without introducing additional features.

Usage example

visible = { ~ a = 1, b = 2 }

Creating an opaque wrapper

opaque = Opaque(visible)

Modifying values in the hidden scope

opaque.c = 3 # the same as regular scope

The hidden scope is excluded from serialization at the top level

recode.toJSON({ opaque, visible }) # '{"opaque":null,"visible":{"a":1,"b":2}}'

Direct serialization of the hidden scope would still work

recode.toJSON(opaque) # '{"a":1,"b":2,"c":3}'

Performance notes

The Opaque type introduces a layer of indirection that could impact performance in scenarios involving frequent access or
modifications to the hidden data. Consider using it selectively for scenarios requiring encapsulation, e.g. storing credentials
within an instance.

See also

Scope type
Recode library

Option

111

Option
Encapsulation of optional value

Import

_ <- fat.extra.Option

Error type is automatically imported along with this import

Types

This library introduces two main constructs: Some and None, which are special cases of the Option type, providing a way to
represent optional values, encapsulating the presence (Some) or absence (None) of a value.

Prototype members

Name Signature Brief
isEmpty <> Boolean Check if the option is None
nonEmpty <> Boolean Check if the option is Some
size <> Number Return 1 if Some, 0 if None
toText <> Text Return the text literal
freeze <> Void Make the value immutable
get <> Any Return value or raise NoSuchElement
getOrElse (default: Any): Any Return value or default if None
map (fn: Method): Option Apply method to contained value
flatMap (fn: Method/Option): Option Apply method that returns Option
filter (predicate: Method): Option Filter value by predicate
toList <> List Convert option to List
concrete <> Option Resolve option to Some or None

Usage example

_ <- fat.extra.Option

Creating options

x = Some(5) # equivalent to Option(5).concrete

y = None() # equivalent to Option().concrete

Working with options

isEmptyX = x.isEmpty # false

isEmptyY = y.isEmpty # true

valX = x.getOrElse(0) # 5

valY = y.getOrElse(0) # 0

Applying a transformation

transformedX = x.map(v -> v * 2).getOrElse(0) # 10

transformedY = y.map(v -> v * 2).getOrElse(0) # 0

Lifting values to option

label: Text = Option(opVal).concrete >> {

 Some => 'some value' # case where opVal is not null

 None => 'no value' # case where opVal is null

}

Option in Functional Programming

In FatScript, null is integrated as a first-class citizen, enabling native types, in most cases, to handle absent values without
necessitating additional constructs for safety. Consequently, the Option type is included in the extra package as a syntactic
sugar.

Option

112

It allows explicit encapsulation of optional values for semantic clarity or adherence to certain functional programming
paradigms. An example of its utility is demonstrated in the Scope type, which includes a maybe method alongside the
standard value retrieval syntax:

myScope('key') returns the value associated with key or null if the key does not exist.
myScope.maybe('key') provides an Option wrapped value, distinguishing explicitly between the existence
(Some) and absence (None) of a value.

Semantic handling of missing values

One of the key benefits of using the Option type is its ability to handle operations with potentially missing values
semantically and safely. This feature is particularly useful in primitive operations or data transformations where null values
might otherwise lead to errors. For example, consider a scenario where you need to sum a number with a value that may not be
present:

Assuming eggsBought is defined and has a value

eggsBought: Number = ...

fridge.maybe('egg') retrieves the number of eggs in the fridge as an Option

If 'egg' is not present, it defaults to 0, avoiding null-related errors

totalEggs: Number = fridge.maybe('egg').getOrElse(0) + eggsBought

Performance considerations

The use of Option types introduces computational overhead due to function calls needed to manipulate values and additional
memory stemming from their underlying structure. While the benefits of safety and expressiveness are significant, the
performance cost could become noticeable in tight loops or when processing large datasets.

See also

Scope type
Error type

Param

113

Param
Parameter presence and type verification

Import

_ <- fat.extra.Param

Error type is automatically imported with this import

Types

This library introduces the Param type and the Using/UsingStrict utility for implicit parameter declaration.

Constructors

Both Param and Using/UsingStrict constructors take two arguments:

_exp: Text: the parameter name to check in context.
_typ: Type: the expected type of the evaluated value.

Additionally Param accepts an optional argument:

strict: Boolean: disable flexible match (default is false).

Using has this flag set as false, and UsingStrict has it set as true

Param

The Param type provides mechanisms for checking the presence and type of parameters in the execution context.

Prototype members

Name Signature Brief
get <> Any Retrieve the parameter if it matches the type

the get method throws KeyError if the parameter is not defined, and TypeError if the type does not match

Example

_ <- fat.extra.Param

_ <- fat.type.Text # the desired type must be loaded

currentUser = Param('userId', Text)

...

Assuming userId is defined in the context and is a text,

safely retrieve it's value from the current namespace

userId = currentUser.get

Using

Apply Using/UsingStrict to suppress implicit parameter hints on method declarations for entries expected to be in scope.

alternatively, to suppress warnings about implicit parameters, name the implicit entry starting with an underscore (_)

Example

_ <- fat.extra.Param

_ <- fat.type.Text

printUserIdFromContext = <> {

Param

114

 Using('userId', Text)

 console.log(userId)

}

if the implicit parameter is missing or mismatched, an error will be raised at runtime when the method is called

See also

Extra package

Sound

115

Sound
Sound playback interface

wrapper for command-line audio players using fork and kill

Import

_ <- fat.extra.Sound

Constructor

The Sound constructor takes three arguments:

path: the filepath of your audio file.
duration (optional): the cool off time (in milliseconds) to accept to play again the file, usually you want to set this to
the exact duration of your audio.
player (optional): the default player used is aplay (common Linux audio utility, only supports wav files), but you
could use ffplay to play mp3, for example, defining ffplay = ['ffplay', '-nodisp', '-
autoexit', '-loglevel', 'quiet'], then providing it as argument for your sound instance. In this case
the package ffmpeg needs to be installed on the system.

Prototype members

Name Signature Brief
play <> Void Start player, if not already playing
stop <> Void Stop player, if still playing

state of "still playing" is inferred from the duration parameter

Example

_ <- fat.extra.Sound

time <- fat.time

applause = Sound('applause.wav', 5000);

applause.play

time.wait(5000)

note that Sound spawns a child process to play the audio, so it is asynchronous

Sound in Web Build

When using fry built with Emscripten (for example, when using FatScript Playground), this prototype uses embedded
commands $soundPlay and $soundStop, which are only defined in the web build. Therefore, instead of utilizing a CLI
audio player through process forking, there is audio support via SDL2/WebAudio.

See also

Extra package

https://fatscript.org/playground

Storable

116

Storable
Data store facilities

Import

_ <- fat.extra.Storable

file library, sdk library, enigma library, Error type, Text type, Void type and Method type are automatically imported with
this import

Mixins

This library introduces two mixin types: Storable and EncryptedStorable

Storable

The Storable mixin provides methods for storing and retrieving objects in the filesystem using JSON serialization.

Prototype members

Name Signature Brief
list <> Keyset Get list of ids for stored instances
load (id: Text): Any Load an object from the filesystem
save <> Boolean Save the current object instance
erase <> Boolean Delete the file associated with the id

the load and save methods throw FileError on failure

EncryptedStorable

Extends Storable with encryption capabilities for safer data storage. Requires an implementation of getEncryptionKey
method.

Usage example

_ <- fat.extra.Storable

Define a type that includes Storable (or EncryptedStorable)

User = (

 Storable # Include the Storable mixin

 # EncryptedStorable # alternative implementation

 # getEncryptionKey = (): Text -> '3ncryp1ptM3' # could get via KMS or config

 ## Argument slots

 name: Text

 email: Text

 # Setters return new immutable instance copy with updated field

 setName = (name: Text) -> self + User * { name }

 setEmail = (email: Text) -> self + User * { email }

)

Create a new user instance

newUser = User('Jane Doe', 'jane.doe@example.com')

Save the new user

newUser.save

Update a user's information and save the changes

updatedUser = newUser

Storable

117

 .setName('Jane Smith')

 .setEmail('jane.smith@example.com')

updatedUser.save

List all saved users

userIds = User.list

Load a user from the filesystem

userId = userIds(0) # ...or newUser.id

loadedUser = User.load(userId)

Delete user's data from the filesystem

loadedUser.erase # ...or User.erase(userId)

Storable in Web Build

When using fry built with Emscripten (for example, when using FatScript Playground), this prototype uses embedded
commands $storableSet, $storableGet, $storableList, and $storableRemove, which are only defined in the
web build. Therefore, instead of using the conventional file system for storage, there is special support for using the browser's
localStorage object.

See also

Extra package

https://fatscript.org/playground

Embedded commands

118

Embedded commands
Embedded commands are FatScript's low-level functions that can be invoked with keywords preceded by a dollar sign $. These
commands are always available, implemented as compiled code, and require no imports.

Unlike methods, they take no explicit arguments, but may read from specific entry names in the current scope, or even from the
interpreter's internal state.

Handy ones

Here a are some embedded commands that could be useful to know:

$break pauses execution and loads the debugging console
$debug toggles interpreter debug logs (only in some builds)
$exit exits program with provided code
$keepDotFry keeps the config (.fryrc) in scope after startup
$result toggles result printing at the end of execution
$root provides a reference to global scope
$self provides a self reference to method/instance scope
$bytesUsage returns maximum of bytes allocated
$nodesUsage returns total of nodes allocated at the moment
$isMain checks if code is executing as main or module
$port retrieves actual port number assigned to the HTTP server

root and self keywords are automatically lifted into $root and $self

You can call those directly on your code, like:

$exit # terminates the program

in order to use other embedded commands you have to study the C implementation of fry, as the complete list is not
documented, refer to embedded.c file

Libs under the hood

Standard libraries wrap embedded calls into methods, providing a more ergonomic interface. You don't need to create an
execution scope or load arguments into that scope before delegating execution to them.

For example, here's how you can use the floor method from math lib:

_ <- fat.math

floor(2.53)

This method is implemented as:

floor = (x: Number): Number -> $floor

Under the hood, the floor method creates an execution scope and loads an argument as x into it. The method then delegates
execution to the $floor embedded command, which reads the value of x from the current scope and returns the floor of that
number.

You can achieve the same outcome as above method by doing the following:

x = 2.53

$floor # reads value of x from current scope

Hacking

You can see which embedded command a library method is calling by looking into the library's implementation via the
readLib method from the SDK lib. Technically, there is nothing preventing you from calling embedded commands directly.

For example, you could terminate your program by calling $exit directly, which will exit with code 0 (default) or, if a
numeric entry named code exists in the current scope, the value of that entry will be used as the exit code. However, it would
be more elegant to import the fat.system library and call the exit method with the desired exit code:

https://gitlab.com/fatscript/fry/blob/main/src/sdk/embedded.c

Embedded commands

119

sys <- fat.system

sys.exit(0) # exits with code 0

This approach makes your code more readable and less prone to errors, and it also provides a better separation of concerns.

It's important to keep in mind that embedded commands are black boxes and not intended for writing common FatScript code.
In most cases, you would need to read the underlying C implementation to better grasp what a command is actually doing.

While it's possible to use embedded commands to gain additional runtime performance by avoiding imports and method calls,
this is not recommended due to the loss of code readability. In general, it's better to use the standard libraries and follow best
practices for writing clear, maintainable code.

https://gitlab.com/fatscript/fry/tree/main/src/libs

	Introduction
	General overview
	Setup
	Options
	Bundling
	Tooling

	Syntax
	Formatting
	Imports
	Entries
	Types
	Any
	Void
	Boolean
	Number
	HugeInt
	Text
	Method
	List
	Scope
	Error
	Chunk

	Flow control
	Loops

	Libraries
	async
	bridge
	color
	console
	curses
	enigma
	failure
	file
	http
	math
	recode
	sdk
	smtp
	system
	time
	type._
	Void
	Boolean
	Number
	HugeInt
	Text
	Method
	List
	Scope
	Error
	Chunk

	extra._
	Date
	Duration
	Fuzzy
	HashMap
	Logger
	Memo
	MouseEvent
	Opaque
	Option
	Param
	Sound
	Storable

	Embedded commands

