
1

Table of Contents
1. Introduction 1.1
2. General overview 1.2

1. Setup 1.2.1
2. Options 1.2.2
3. Bundling 1.2.3
4. Tooling 1.2.4

3. Syntax 1.3
1. Formatting 1.3.1
2. Imports 1.3.2
3. Entries 1.3.3
4. Types 1.3.4

1. Any 1.3.4.1
2. Void 1.3.4.2
3. Boolean 1.3.4.3
4. Number 1.3.4.4
5. HugeInt 1.3.4.5
6. Text 1.3.4.6
7. Method 1.3.4.7
8. List 1.3.4.8
9. Scope 1.3.4.9

10. Error 1.3.4.10
11. Chunk 1.3.4.11

5. Flow control 1.3.5
6. Loops 1.3.6

4. Libraries 1.4
1. async 1.4.1
2. color 1.4.2
3. console 1.4.3
4. curses 1.4.4
5. enigma 1.4.5
6. failure 1.4.6
7. file 1.4.7
8. http 1.4.8
9. math 1.4.9

10. recode 1.4.10
11. sdk 1.4.11
12. system 1.4.12
13. time 1.4.13
14. type._ 1.4.14

1. Void 1.4.14.1
2. Boolean 1.4.14.2
3. Number 1.4.14.3
4. HugeInt 1.4.14.4
5. Text 1.4.14.5
6. Method 1.4.14.6
7. List 1.4.14.7
8. Scope 1.4.14.8
9. Error 1.4.14.9

10. Chunk 1.4.14.10
15. extra._ 1.4.15

1. Date 1.4.15.1
2. Duration 1.4.15.2
3. HashMap 1.4.15.3
4. Logger 1.4.15.4
5. Memo 1.4.15.5
6. Option 1.4.15.6
7. Sound 1.4.15.7
8. Storable 1.4.15.8

16. Embedded commands 1.4.16

Introduction

2

Introduction
FatScript logo

Hello World

_ <- fat.std
console.log('Hello World')

Quick Start

Jump straight into the docs:

General overview
Language syntax
Standard libraries

Running your code

You can run FatScript using either the fry interpreter or the web playground.

Fry Interpreter

For local execution, use the fry interpreter. For details on its installation and usage, refer to the setup section.

Web Playground (beta)

For quick and convenient testing, run your code directly in the FatScript Playground. The playground features a REPL and an
intuitive interface that allows you to load scripts from a file, facilitating swift experimentation.

PDF Download

FatScript v2.5.0 (current)
FatScript v1.3.5 (legacy)

Tutorials

Dive into our immersive tutorials, behind-the-scenes insights, and surrounding topics in the FatScript YouTube channel.

Donations

Did you find FatScript useful and would like to say thanks?

Buy me a coffee

License

GPLv3 © 2022-2024 Antonio Prates

fatscript.org

Published on Fri Apr 12 2024 18:49:19 GMT-0300 (Brasilia Standard Time)

https://fatscript.org/playground
clbr://internal.invalid/pdf/fatscript_v2_en.pdf
clbr://internal.invalid/pdf/fatscript_v1_en.pdf
https://www.youtube.com/@fatscript
https://www.buymeacoffee.com/aprates
clbr://internal.invalid/LICENSE
https://fatscript.org/

General overview

3

General overview
FatScript is a lightweight, interpreted programming language designed for building console-based applications. It emphasizes
simplicity, ease of use, and functional programming concepts.

Free and open-source

fatscript/fry is an open-source project that encourages knowledge sharing and collaboration. We welcome developers to
contribute to the project and help us improve it over time.

Key Concepts

Automatic memory management through garbage collection (GC)
Symbolic character combinations for a minimalistic syntax
REPL (Read-Eval-Print Loop) for quick expression testing
Support for type system, inheritance, and sub-typing via aliases
Support for immutable programming and passable methods (as values)
Keep it simple and intuitive, whenever possible

Contents of this section

Setup: how to install the FatScript interpreter
Options: how to customize the runtime
Bundling: how to pack a FatScript application
Tooling: overview of a few extra tools and resources

Limitations and challenges

While FatScript is designed to be simple and intuitive, it is still a relatively new language and may not be suitable for all use
cases. For example, it may underperform compared to more mature programming languages when dealing with complex
workloads or high-performance computing tasks.

https://gitlab.com/fatscript/fry/blob/main/CONTRIBUTING.md

Setup

4

Setup
To start "frying" your fat code, you'll need an interpreter for the FatScript programming language.

fry, The FatScript Interpreter

fry is a free interpreter and runtime environment for FatScript. You can install it on your machine using the following
instructions.

Installation

fry is designed for GNU/Linux, but it might also work on other operating systems.

For Arch-based distributions, install via fatscript-fry AUR package.

For other distributions, try the auto-install script:

curl -sSL https://gitlab.com/fatscript/fry/raw/main/get_fry.sh -o get_fry.sh;
bash get_fry.sh || sudo bash get_fry.sh

Or, to install fry manually:

Clone the repository:

git clone --recursive https://gitlab.com/fatscript/fry.git

Then, run the installation script:

cd fry
./install.sh

the manual installation may copy the fry binary to the $HOME/.local/bin folder, alternatively use sudo to install it to
/usr/local/bin/

Verify that fry is installed by running:

fry --version

Dependencies

If the installation fails, you may be missing some dependencies. fry requires git, gcc and libcurl to build. For example,
to install these dependencies on Debian/Ubuntu, run:

apt update
apt install git gcc libcurl4-openssl-dev

Back-end for text input

linenoise is a lightweight dependency and an alternative to readline, maintained as a submodule. If it was not included
during the initial git clone operation, you can rectify this with the following commands:

git submodule init
git submodule update

If you prefer to link against readline, just ensure it is installed by running:

apt install libreadline-dev

OS Support

fry is primarily designed for GNU/Linux, but it's also accessible on other operating systems:

Android

If you're on Android, you can install fry via Termux. Just install the required dependencies like so:

https://gitlab.com/fatscript/fry
https://aur.archlinux.org/packages/fatscript-fry
https://termux.dev/

Setup

5

pkg install git clang

Then you can follow the standard installation instructions for fry.

ChromeOS

If you're using ChromeOS, you can enable Linux support by following the instructions here.

MacOS

If you're using MacOS, you'll need to have Command Line Tools installed.

iOS

If you're using iOS, you may use fry via iSH. First, install the required dependencies:

apk add bash gcc libc-dev curl-dev

Then, according to this thread, configure git to work properly, like so:

wget https://dl-cdn.alpinelinux.org/alpine/v3.11/main/x86/git-2.24.4-r0.apk
apk add ./git-2.24.4-r0.apk
git config --global pack.threads "1"

Windows

If you're using Windows, you can use fry via Windows Subsystem for Linux (WSL).

Docker image

fry is also available as a docker image:

docker run --rm -it fatscript/fry

To execute a FatScript file with docker, use the following command:

docker run --rm -it -v ~/project:/app fatscript/fry prog.fat

replace ~/project with the path to your FatScript file

Troubleshooting

If you encounter any issues or bugs while using fry, please open an issue.

https://chromeos.dev/en/linux/setup
https://developer.apple.com/forums/thread/670389
https://github.com/ish-app/ish/
https://github.com/ish-app/ish/issues/943
https://learn.microsoft.com/en/windows/wsl/install
https://hub.docker.com/r/fatscript/fry/tags
https://gitlab.com/fatscript/fry/issues

Options

6

Options
With this breakdown of the available modes and parameters you will find out that fry has got several spices under the hood
for you to better season your runtime.

Command-line arguments

The CLI front-end offers some modes of operation:

fry [OPTIONS] read-eval-print-loop (REPL)
fry [OPTIONS] FILE [ARGS] execute a FatScript file
fry [OPTIONS] -b/-o OUT IN create a bundle
fry [OPTIONS] -f FILE... format FatScript source files

Here are the available option parameters:

-a, --ast print abstract syntax tree only
-b, --bundle save bundle to outfile (implies -p)
-c, --clock enable time and stats log (benchmark)
-d, --debug enable debug logs (implies -c)
-e, --error continue on error (toggle)
-f, --format indent FatScript source files
-h, --help show this help and exit
-i, --interactive enable REPL with file execution
-j, --jail restrict FS, network and sys calls
-k, --stack # set stack depth (frame count)
-m, --meta show info about this build
-n, --nodes # set memory limit (node count)
-o, --obfuscate encode bundle (implies -b)
-p, --probe perform static analysis (dry run)
-s, --save store REPL session to repl.fat
-v, --version show version number and exit
-w, --warranty show disclaimer and exit
-z, --minify minify source (implies -p)

Note that when in the REPL mode or when using --probe, the -e option (continue on error) is toggled on by default.

Memory management

fry manages memory automatically without pre-reservation. You can limit memory usage by specifying the number of nodes
with CLI options:

-n <count> for an exact node count
-n <count>k for kilonodes, count * 1000
-n <count>m for meganodes, count * 1000000

For example, fry -n 5k mySweetProgram.fat restricts the app to 5000 nodes.

The garbage collector (GC) runs automatically when there are 256 nodes left before the final memory limit is reached (GC
premonition). You can also invoke the GC at any time by calling the runGC method of SDK lib from the main thread.

Bytes estimate (x64)

Each node on a 64-bit platform uses approximately ~200 bytes. The actual node size depends on the data it holds. For example,
the default limit is 10 million nodes, your program can use up to 2 GB of RAM when reaching the default limit.

Use the -c or --clock option to print the execution stats to have a better understanding of how your program is behaving in
practice.

Runtime verification

There are two embedded commands for checking memory usage at runtime:

$nodesUsage currently allocated nodes (O(1))

Options

7

$bytesUsage currently allocated bytes (O(n))

checking the currently allocated bytes is an expensive operation as it needs to traverse all nodes to check the actual size of
each one

Stack size

The maximum stack depth is defined in parameters.h, however you may be able to customize the stack size up to a certain
point using CLI options:

-k <count> for an exact frame count
-k <count>k for kibiframes, count * 1024

Run commands file

On bootstrap, fry looks for a .fryrc file on the same path of the program file and, if not present, also on the current working
directory. If found, it is executed as a "precook" phase to set up the environment for the program execution.

Memory management with .fryrc

You can use the .fryrc file to define the memory limit for your project without needing to specify it as a CLI argument. To
do this, you can use the setMem method provided by the SDK lib, like this:

_ <- fat.system
setMem(64000) # sets 64k nodes as memory limit

Bootstrap details

CLI options are applied first, except for the memory limit. During the precook phase, fry uses the default limit of 10 million
nodes, regardless of the CLI option. If you define a memory limit in the .fryrc file, that limit takes effect from that point on
and overrides the CLI option for the whole execution. If the .fryrc file does not set a memory limit, the CLI option takes
effect after the precook phase.

The precook scope is invisible by default. After the .fryrc file is executed, a fresh scope is provided for your program, which
allows you to test your code with a very low limit of nodes when using a .fryrc file without affecting the node count. This
also prevents the .fryrc namespace from clashing with your program's global scope. However, if you want to keep the
entries declared in .fryrc in the global scope for configuration purposes, you can call the embedded command
$keepDotFry somewhere in the .fryrc file.

Another possible use, other than setting up memory limit, is to pre-load common imports, for example the standard types:

$keepDotFry
_ <- fat.type._

Sandbox mode

Use the -j or --jail option to inhibit the following embedded commands:

write, remove, and mkDir - These commands modify the file system.
request - This command is used for making outbound HTTP requests.
shell, capture, fork, and kill - These commands are involved in starting or stopping arbitrary processes.

See also

Embedded commands
SDK library

Bundling

8

Bundling
Fry offers an integrated bundling tool for FatScript code.

Usage

To bundle your project into a single file starting from the entry point, execute:

fry -b sweet mySweetProject.fat

This process consolidates all imports (except literal paths) and trims unnecessary spaces, enhancing load times:

Adds a shebang to bundled code
Receives the execute attribute for file mode

Subsequently, you can run your program:

./sweet

the bundling will replace any $break statements (debugger breakpoint) with ()

Obfuscating

For optional obfuscation, use -o:

fry -o sweet mySweetProject.fat # creates the obfuscated bundle
./sweet # executes your program as usual

When distributing via public hosts, consider setting a custom key with a local .fryrc. Only the client should be privy to
this key to safeguard the source.

Obfuscation leverages enigma algorithm for encryption, ensuring swift decoding. For optimal load times, prefer -b if
obfuscation isn't essential.

Caveats

Imports are deduplicated and inlined based on their order of first appearance. As a result, the sequence in which you import
your files could play a role in the final bundled output. Though these considerations are usually inconsequential for small
projects, bundling larger projects may require additional organization. Always validate your bundled output.

https://bash.cyberciti.biz/guide/Shebang

Tooling

9

Tooling
Here are a few hints that can enhance your coding experience with FatScript.

Static analysis

Use the probe mode to check the syntax and receive hints about your code:

fry -p mySweetProgram.fat

Debugger

A breakpoint, indicated by the command $break, serves as a debug tool by temporarily halting the program execution at a
designated location and loading the built-in debugging console. It provides an interactive environment for examining the
current state of the program by inspecting values in scope, evaluating expressions, and tracing program flow.

To activate breakpoints, it is necessary to run the program with interactive mode enabled:

fry -i mySweetProgram.fat

In FatScript, $break returns null, which can alter a return value if placed at the end of a block, due to the auto-return
feature. Be cautious with $break placement to avoid unintended effects on program functionality.

Source code formatting

Built-in support

You can apply auto-indentation to your sources using the following command:

fry -f mySweetProgram.fat

Visual Studio Code Extension

To add code formatter support to VS Code, you can install the fatscript-formatter extension. Launch VS Code Quick Open
(Ctrl+P), paste the following command, and press enter:

ext install aprates.fatscript-formatter

fry needs to be installed on your system for this extension to work

Syntax highlighting

Visual Studio Code Extension

To add FatScript syntax highlighting to VS Code, you can install the fatscript-syntax extension. Launch VS Code Quick Open
(Ctrl+P), paste the following command, and press enter:

ext install aprates.fatscript-syntax

You can also find and install these extensions from the VS Code Extension Marketplace.

Vim and Neovim Plugin

To install FatScript's syntax highlighting for Vim and Neovim, check out the vim-syntax plugin.

For Neovim users, add the respective line to your configuration:

Using packer.nvim:

use { 'https://gitlab.com/fatscript/vim-syntax', as = 'fatscript' }

Using lazy.nvim:

{ 'https://gitlab.com/fatscript/vim-syntax', name = 'fatscript' }

https://marketplace.visualstudio.com/items?itemName=aprates.fatscript-formatter
https://marketplace.visualstudio.com/items?itemName=aprates.fatscript-syntax
https://gitlab.com/fatscript/vim-syntax

Tooling

10

Nano Syntax File

To install FatScript's syntax highlighting for nano, follow these steps:

1. Download the fat.nanorc file from here.
2. Copy the fat.nanorc file to the nano system directory:

sudo cp fat.nanorc /usr/share/nano/

If the syntax highlighting does not get automatically enabled, you may need to explicitly enable it in your .nanorc file. Refer
to the instructions in the Arch Linux Wiki for more information.

After installing the syntax highlighting, you can also use the code formatter in nano with the following shortcut sequence:

Ctrl+T Execute; and then...
Ctrl+O Formatter

Other tips

Console file navigation

To navigate your project folders from the terminal, you can try using a console file manager such as ranger, paired with nano,
vim or nvim. Set it as the default editor for ranger by adding the following line to your ~/.bashrc file:

export EDITOR="nano"

https://gitlab.com/fatscript/fry/-/raw/main/extras/fat.nanorc?inline=false
https://wiki.archlinux.org/title/Nano#Syntax_highlighting
https://ranger.github.io/

Syntax

11

Syntax
In the following pages, you will find information on the central aspects of writing FatScript code, using both the basic language
features as well as the advanced type system and standard libraries features.

Topics covered

Formatting: how to format FatScript code properly

Imports: how to import libraries into your code

Entries: understanding the concept of entries and scopes

Types: a guide to FatScript type system

Flow control: controlling the program execution with conditionals

Loops: making use of ranges, map-over and while loops

Formatting

12

Formatting
In FatScript, whitespace and indentation are irrelevant, yet they are very welcome to make the code more readable and easier to
understand.

Whitespace

A newline character (\n) indicates the end of an expression, except when:
the last token on the line is an operator
the first token of the next line is a non-unary operator
using parentheses to group expressions

Expressions can be on the same line if separated by comma (,) or semicolon (;)

Comments

Comments start with #, and are terminated by a newline:

a = 5 # this is a comment

Note

FatScript does not support multiline comments at the moment. Additionally, text literals may end up as a valid return value if
left as the last standing line, due to the auto-return feature. Therefore, it is recommended to stick to the single line comment
format.

See also

Source auto-formatter

Imports

13

Imports
Let's unravel the art of importing files and libraries in FatScript! Why? Well, because in this language you can import whenever
your heart desires, simply by using a left arrow <-.

Dot syntax

To use imports with dot syntax, project files and folders should neither start with a digit nor contain symbols.

you can force any path you like by using literal paths

Named import

To import files, use the .fat extension for filenames (or no extension at all), but omit the extension in the import statement.
Here's an example:

ref <- filename

if both x and x.fat files exist, the latter takes precedence

For importing files from folders:

ref1 <- folder.filename
ref2 <- folder.subfolder.filename

To import all files from a folder, leverage the dot-underscore syntax:

lib <- folder._

Please note: only files immediately inside the folder are included using the above syntax. To include files from subfolders,
explicitly mention them. Additionally, a "_.fat" file (or "_" file) inside a folder can override the dot-underscore import behavior.

Element access

Once imported, access elements using dot syntax:

ref1.element1

Element extraction

To extract specific elements from a named import or to avoid prepending the module name every time (e.g., lib.foo),
employ destructuring assignment:

{ foo, bar } = lib

Visibility

Named imports are resolved at the global scope, irrespective of where they are declared. This means even if you declare a
named import inside a function or a local scope, it will be globally accessible.

Local import

To import within the current scope, use:

_ <- filename

Local imports, unlike named imports, dump the file content directly into the current scope. Thus, an imported method can be
invoked as baz(arg) rather than ref.baz(arg).

While local imports are best suited for importing types into the global scope, they should be used with caution when importing
library content. Overusing local imports can lead to namespace pollution, which can make it more challenging to follow the
code, because it becomes less apparent where the methods come from.

Selective local import

Imports

14

You also can discard elements from a local import by using destructuring assignment:

{ foo } = { _ <- lib }

the point is to avoid namespace pollution, as all the contents will be processed

Literal paths

With literal paths, you may use any filename or extension. However, note that those imports are not evaluated during bundling,
but at runtime. Here's an example:

ref <- '_folder/2nd-source.other'

You can also use smart texts as literal paths:

base = 'folder'
file = 'source.xyz'
ref <- '{base}/{file}'

Since FatScript alternatively accepts JSON-like syntax you may even load a JSON file directly as an import:

json <- 'sample/data.json'

however possible, it is more advisable to use file.read and then recode.fromJSON

Keep in mind that literal paths can make your code more complex, and those imports can only be dynamically resolved, so use
them sparingly.

Import policy

FatScript utilizes an "import once" strategy with an in-scope flag mechanism, automatically bypassing files that have already
been imported.

Imports are generally resource-efficient. However, local imports within method bodies should be avoided as they are re-
evaluated with each invocation, potentially causing memory retention.

This behavior is not classified as a bug per se, but rather a consequence of design choices in FatScript's garbage collection (GC)
system. The GC's optimizations exclude nodes directly derived from source code, allowing them to evade standard mark-and-
sweep procedures. As a result, local imports within methods miss out on deduplication, causing their nodes to remain resident
until the program's end:

myMethod = -> {
 _ <- lib # potential memory leak
 ...
}

Here are some strategies to address this issue:

Relocate the import statement to the outer scope.
Opt for a named import as an alternative.
Reorganize the 'lib' structure to export a method.

Entries

15

Entries
Entries are key-value pairs that exist in the scope where they are declared.

Naming

Entry names (keys) cannot start with an uppercase letter, which is the distinction compared to types. Identifiers are case-
sensitive, so "frenchfries" and "frenchFries" would be considered different entries.

The recommended convention is to use camelCase for entries.

you may use an arbitrary name as key by using dynamic nomination

Declaration and assignment

In FatScript, you can declare entries by simply assigning a value:

isOnline: Boolean = true
age: Number = 25
name: Text = 'John'

Types can also be inferred from assignment:

isOnline = true # Boolean
age = 25 # Number
name = 'John' # Text

Immutable entries

In FatScript, declaring an entry defaults it to being immutable, meaning once assigned, its value cannot be changed. This
immutability ensures consistency throughout the program's execution:

fruit = 'banana'
fruit = 'apple' # raises an error because 'fruit' is immutable

Exception to the Rule

The immutability in FatScript applies to the binding of the entry, not to the contents of scopes. Even though an entry is
immutable, if it contains a scope, the content of that scope can be modified, either by adding new entries or by modifying
mutable entries within the scope:

s = { a = 1, b = 2 }
s.c = 3 # even though 's' is immutable it accepts the new value of 'c'
s # now { a = 1, b = 2, c = 3 }

This design choice offers flexibility with scope modifications. In contrast, lists enforce stricter immutability, preventing the
addition of new entries to immutable lists.

Also note that scopes are always passed by reference. To modify a scope's content without altering its original reference, use
the copy method from the Scope prototype extension to create a duplicate.

Mutable entries

Yes, you can declare mutable entries, also known as variables. To declare a mutable entry, use the tilde ~ operator:

~ fruit = 'banana'
fruit = 'apple' # ok

Note that even a mutable entry cannot immediately change its type, unless it's erased from the scope. To erase an entry, assign
null to it, and then redeclare it with a new type. Changing types is discouraged by the syntax and not recommended, but it is
possible:

~ color = 32 # creates color as a mutable Number entry
color = 'blue' # raises a TypeError because color is a Number

Entries

16

color = null # entry is erased
color = 'blue' # redefines color with a different type (Text)

you have to declare the entry as mutable again using tilde ~ when redefining after erasure if you want the next value to be
mutable

Dynamic entries

You can create entries with dynamic names using square brackets [ref]:

ref = 'popCorn' # text will be the name of the entry

options = { [ref] = 'is tasty' }

options.[ref] # dynamic syntax: yields 'is tasty', with read and write access
options(ref) # get syntax: yields 'is tasty', but value is read-only
options.popCorn # dot syntax: yields 'is tasty', but has to follow naming rules

all dynamic declarations are mutable entries

This feature allows to dynamically define the names inside a scope and create entries with names that otherwise would not be
accepted by FatScript.

Dynamic entries can also use numeric references, however the reference is converted into text automatically, e.g.:

[5] = 'text stored in entry 5'
self.['5'] # yields 'text stored in entry 5'
self.[5] # yields 'text stored in entry 5'

in a different context, not followed by assignment = or preceded by dot notation ., dynamic syntax will be interpreted as a
list declaration

Special entries

Entries with names starting with underscore _ are completely free and dynamic, they don't require tilde ~ and can also change
type without the need of erasure, like variables in JavaScript or Python.

Destructuring assignment

You can copy values of a scope into another scope like so:

_ <- fat.math
distance = (position: Scope/Number): Number -> {
 { x, y } = position # destructuring assignment into method scope
 sqrt(x ** 2 + y ** 2) # calculates distance between origin and (x, y)
}
distance({ x = 3, y = 5 }) # 5.83095189485

The same syntax works similarly for lists:

distance = (position: List/Number): Number -> {
 { x, y } = position # extracts first and second items to 'x' and 'y'
 sqrt(x ** 2 + y ** 2)
}
distance([3, 5]) # 5.83095189485

You can also use destructuring assignment to expose a certain method or property from a named import:

console <- fat.console
{ log } = console
log('Hello World')

using this syntax with imports, you can choose to bring to the current scope only the elements of the library that you are
interested in using, thus avoiding polluting the namespace with names that would otherwise have no use or could clash
with those of your own writing

JSON-like syntax

FatScript also supports JSON-like syntax for declaring entries:

Entries

17

"nothing": null, # Void entry - distinct behavior, see bellow
"isOnline": true, # Boolean entry
"age": 25, # Number entry
"name": "John", # Text entry
"tags": ["a", "b"], # List entry
"options": { "prop": "other" } # Scope entry

However it might appear that declaring "nothing" creates a "nothing" value of null, it's important to note that the "resulting
entry" doesn't actually exist in the scope. When you try to access that "nothing", FatScript does return null, but if you attempt
to map over the scope, the name of that entry will be missing since it was never truly created.

It's important to note that JSON-like declarations always create immutable entries, so you can't prepend them with the tilde ~
character to make them mutable.

Types

18

Types
Types are used in FatScript to combine data and behavior, acting as templates for creating new replicas.

Naming

Type names are case-sensitive and must start with an uppercase letter.

The recommended convention for type identifiers is PascalCase.

Native Types

FatScript provides several native types:

Any - anything
Void - nothing
Boolean - primitive
Number - primitive
HugeInt - primitive
Text - primitive
Method - function or lambda
List - like array or stack
Scope - like object or dictionary
Error - yes, for errors
Chunk - binary data

However, you need to import the types package to access the prototype members for each type.

Additional Types

FatScript's native types are augmented with a collection of extra types that build upon the core functionalities of its native
types. Crafted in pure FatScript, these additional types cater to various advanced programming needs and facilitate common
design patterns.

Moreover, you will find domain-specific types embedded within libraries, such as Worker in the async library, FileInfo in
file, HttpRequest (among others) in http, CommandResult in system etc.

Custom Types

Besides using the types provided by the language or an external library, you may also create your own types, or extend existing
ones with new behaviors.

Declaration

To define a custom type in FatScript, you can use a simple assignment statement. The type definition can be wrapped in either
parentheses or curly brackets. Both syntaxes are valid and have the same effect. You may also optionally define default values
for the type's properties, as shown in the following example:

Type definition using parentheses with default values
Car = (km: Number = 0, color: Text = 'white')

Global Uniqueness

FatScript features a singular global meta-space, necessitating unique type names across your entire program and any included
libraries. Attempting to define a type that shares a name with an existing type, even if in a different scope, triggers an
AssignError. However, if the new definition is identical, it will simply be ignored.

To survey the types present in the global meta-space, the command _<-fat.std; sdk.getTypes; proves useful. This
function enumerates all defined types, and details their definition locations with source:line:column markers. This
feature helps navigating and understanding the structure of your code and its dependencies.

It is wise to steer clear of names already in use by fat.std library types when defining new types.

clbr://internal.invalid/book/errors.md

Types

19

While FatScript does not impose a strict naming protocol for library development, adopting a conflict-averse naming strategy is
recommended. A common practice involves prefixing type names with some unique identifier that reflects your library's name,
thereby reducing the likelihood of name clashes.

Usage

To create instances of a custom type, call the type name as if it were a method, optionally passing values for the properties:

Type usage from defaults
car = Car()
outputs: { km: Number = 0, color: Text = 'white' }

Type usage defaulting one of the properties
redCar = Car(color = 'red')
outputs: { km: Number = 0, color: Text = 'red' }

Type usage, fully qualified
oldCar1 = Car(color = 'blue', km = 38000)
overrides both values

Type usage, args using props sequence
oldCar2 = Car(41000, 'green')
overrides values using type definition order

By default, custom types return a scope of their properties. If you define an apply method, however, the type can return a
different value. For example, here's a custom type Sum with an apply method that returns the sum of its a and b properties:

Sum = (a: Number, b: Number, apply = -> a + b)
Sum(1, 2) # output: 3

note that apply methods do have direct access to instance props

In this example, the output base type of apply is a number, not a scope. This also means that the original properties of the
custom type are lost during instantiation and cannot be accessed again.

Prototype members

Those are special kind of methods, stored inside the type definition:

TypeWithProtoMembers = {
 ~ a: Number
 ~ b: Number

 setA = (newA: Number) -> self.a = newA
 setB = (newB: Number) -> self.b = newB
 sum = (): Number -> self.a + self.b
}

In this example, setA, setB and sum are prototype members. Note that we needed to use self, which is a keyword that
provides a self reference to the instance (or method) scope, so that we could gain access to the props.

Checking types

If you're unsure about the type of an entry, you can simply check by comparing it with a type name:

place = 'restaurant'
place == Number # false
place == Text # true

alternatively, use the typeOf method from the SDK library to extract the type name

Anything can be compared with the reserved word Type which identifies if it refers to a type:

Number == Type # true

Type can also be used to specify that a method takes a type parameter:

combine = (t: Type, val: Any): Any -> ...

Types

20

Type alias

In FatScript, you can create subtypes by aliasing an existing type. This means that the new type will inherit all of the properties
of the base type. Here's an example:

_ <- fat.type.Text
Id = Text # creates an alias

Note that type aliases are hierarchical and can be used to classify values while still inheriting the same behavior. However,
while the alias is considered equal to the base type, instances of the new type are not considered equal to the base type.

To check if a value is an instance of a type alias or its base type, you can use the less-equal comparison operator <=. This
allows you to accept any type on the alias chain, down to the base type. Here's an example:

Id == Text # true, as Id is an alias of Text
x = Id(123) # id: Id = '123'
x == Text # false, however x is Id it's not Text
x == Id # true, as expected x is of type Id
x <= Text # true, as x is of Id which is an alias of Text

This feature allows for fine-grained matching on specific types, while still maintaining the flexibility to use different aliases for
the same underlying type.

limitation: it is not possible to create aliases for Any, Type or Method

Type constraints

In FatScript, you can declare type constraints for method parameters. When a method is called, the argument is automatically
checked against the type constraint. If the argument is not of the expected type or one of its subtypes, a TypeError is raised.

If the type constraint is a base type, any subtype of that type is also accepted as an argument. However, if the type constraint is
a subtype, only arguments that match the subtype are accepted. Here's an example:

generalist = (x: Text) -> x
restrictive = (x: Id) -> x

In this example, the generalist method accepts both Text and Id arguments, because Id is a subtype of Text. The
restrictive method only accepts Id arguments and not Text arguments, because Id is a subtype of Text, but not the
other way around.

It's important to emphasize that custom types are derived from Scope. In this context, Scope would be the generalist type for,
for instance, the custom type Car.

Mixin (advanced)

When defining a type, you can add the features of an existing type simply by mentioning it on the type definition. This is called
type inclusion or mixin.

For instance, to create a new type RentalCar with the properties of Car and an additional price property, you can write:

RentalCar = {
 # Includes
 Car

 # Additional prop
 price: Number
}

RentalCar(50) # { color: Text = 'white', km: Number = 0, price: Number = 50 }

If a property is not defined in the new type, it will inherit the default value from the included type. In the above example, the
color and km properties of Car are present in RentalCar, with their default values.

Inheriting prototype methods

Suppose we continue from the previous example of type TypeWithProtoMembers that has two properties a and b, and
three prototype methods setA, setB and sum. To create a new type WithMoreMembers that adds a property c, a method
setC and overrides the sum method, you can write:

Types

21

WithMoreMembers = {
 # Includes
 TypeWithProtoMembers

 # Props (instance parameters)
 ~ a: Number
 ~ b: Number
 ~ c: Number

 # Prototype members (methods)
 setC = (newC: Number) -> self.c = newC
 sum = (): Number -> self.a + self.b + self.c
}

redeclaring the props allows the new type to also accept arguments at instantiation time, e.g.: WithMoreMembers(1,
2, 3) sets a, b and c

When creating a new instance of WithMoreMembers, all four prototype methods setA, setB, setC and sum will be
available.

Note that if there is a redefinition of a property or method in the new type, the new definition takes precedence.

Type casting

In FatScript, the * symbol is used for type casting, allowing you to treat one data type as another without altering the
underlying data. This capability is especially useful for explicitly specifying the type or for treating values as compatible types,
for example:

time.format(Epoch * 1688257765448) # treats the number as a Unix Epoch value

Flexible type acceptance

FatScript offers flexibility of type acceptance by implementing a system based on type inclusion. This creates interrelated types
that can be interchangeably used within a method or as List items.

When you define a type, it's possible to incorporate one or more additional types within that definition. Take, for example,
types A, B, and C. If types B and C both include type A in their definitions, then they are seen as sharing the same set of
characteristics derived from A. This means B and C are viewed as sibling types under the umbrella of A.

This system enables a method that is designed to accept an object of type B to also be capable of accepting an object of type C,
and vice versa. This is due to the fact that both types B and C share a common basis in type A.

Here's how it looks in code:

A = (_)
B = (A, b = true)
C = (A, c = true)

method1 accepts both B and C because they both include A
method1 = (a: A) -> ...

method2 accepts C since both B and C include the same set of types
(making them sibling types)
method2 = (x: B) -> ...

this logic also applies to List types, as seen with mixedList
mixedList: List/A = [B(), C()]

type flexibility is only possible if the data type is based on Scope

Caveat

You may have to explicitly check the type, e.g. x == B inside the method body if you only want to handle B, but not C on
your method. Or you can create an alias, e.g. D = A and use C = (D, c = true) as type inclusion to avoid flexible
behavior altogether.

Composite types

Types

22

In FatScript, composite types allow you to define complex data structures composed of simpler types. They are represented
using slashes / to separate the types within the composite type definition.

Let's go through a few examples and understand how composite types work:

1. ListOfNumbers = List/Number, defines a composite type ListOfNumbers, which is a list that can only
contain numbers.

2. Matrix = List/List/Number, defines a composite type Matrix, which is a list of lists that can only contain
numbers.

3. MethodReturningListOfNumbers = Method/ListOfNumbers, defines a composite type
MethodReturningListOfNumbers, which is a method that returns a ListOfNumbers.

4. NumericScope = Scope/Number, defines a composite type NumericScope, which is a scope whose entries
can only be of type number.

See also

Type package

Any

23

Any
A virtual type that encompasses all types and no types at the same time.

Default type

Any is the inferred type and return type when no type is explicitly annotated in a method. For example:

identity = _ -> _

is equivalent to:

identity = (_: Any): Any -> _

Using Any, be it implicitly or explicitly, disables type checking for a parameter. The explicit annotation can be a useful in cases
where you want to make it clear that you are giving flexibility in the accepted type.

Being too liberal with Any can make your code less predictable and harder to maintain. It's generally recommended to be more
specific with type annotations whenever possible:

Example of using Any that can lead to issues

console <- fat.console

doubleIt = (arg: Any): Void -> console.log(arg * 2)

doubleIt(2) # prints: '4'
doubleIt('a') # yields: Error: unsupported expression > Text <multiply> Number

This example shows that although the Any type annotation allows flexibility in the parameter type, it can also result in
unexpected behavior if an argument of an unexpected type is passed in. By being more specific with the type annotation, such
as Number, you can make your code more predictable and self-evident.

Example of using a specific type annotation for more predictability

console <- fat.console

doubleIt = (num: Number): Void -> console.log(num * 2)

doubleIt(2) # prints: '4'
doubleIt('a') # yields: TypeError: type mismatch > num

By using Number as the type annotation, the doubleIt method is now more specific and only accepts arguments of type
Number.

Comparisons

The only possible operation with Any is comparing to it, but note that Any accepts all values indistinctly, so there is no
practical use for it:

null == Any # true
true == Any # true
12345 == Any # true
'abcd' == Any # true
[1, 2] == Any # true
{ a = 8 } == Any # true

comparisons with Any can't be used to check for the presence of a value in a scope as even null is accepted

Void

24

Void
When you look into the 'Void', only 'null' can be seen.

Is there anybody out there?

An entry is evaluated to null if not defined on current scope.

You can compare with null using equality == or inequality !=, like:

a == null # true, if 'a' is not defined
0 != null # true, because 0 is a defined value

Keep in mind that you can't declare an entry with no value in FatScript.

While you can assign null to an entry, it causes different behaviors depending on whether the entry already exists in the scope
and whether it's mutable or not:

If an entry hasn't been declared yet, assigning it null has no effect.
If it already exists and is immutable, assigning null raises an error.
If it already exists and is mutable, assigning null removes the entry.

Delete statement

Assigning null to a mutable entry is the same as deleting that entry from the scope. If deleted, nothing is remembered about
that entry in the scope, not even it's original type.

~ m = 4 # mutable number entry
m = null # deletes m from scope

null "values" are always mutable, as in fact nothing is stored about them, and therefore they are the only kind of "value"
that may transition from a mutable state to an immutable state when "reassigned"

Comparisons

You can use Void to check against the value of an entry also, like:

() == Void # true
null == Void # true
false == Void # false
0 == Void # false
'' == Void # false
[] == Void # false
{} == Void # false

Note that Void only accepts () and null.

Forms of emptiness

In FatScript, the concept of "emptiness" or the absence of a value can be represented in two ways: using null or empty
parentheses (). They are effectively identical, in terms of behavior in code:

null == null # true
() == null # true
() == () # true

Using null

The null keyword explicitly denotes the absence of a value. It is commonly used in scenarios where a parameter or return
value might not point to any value.

method(null, otherParam)

var = null

Void

25

It can also be used to make a parameter optional, allowing methods to be called with varying numbers of arguments:

method = (mandatory: Text, optional: Text = null) -> {
 ...
}

null can be used explicitly in any context where an absence of value needs to be represented

Using empty parentheses

When used in the context of method returns, () can signify that the method does not return any meaningful value.

fn = -> {
 doSomething

 ()
}

Here, fn performs some action and then uses () to indicate the absence of a meaningful return value, effectively returning
void.

The difference lies in code style, so this is just a suggestion, not a hard rule.

in modern versions of the interpreter, empty parentheses () are treated as null, ensuring consistent behavior, but, earlier
versions required explicitly using null to denote the absence of a return value

See also

Void prototype extensions

Boolean

26

Boolean
Booleans are very primitive, they can only be 'true' or 'false'.

Comparisons

Aside from equality == and inequality !=, booleans also accept the following operators:

& logical AND

true & true == true
true & false == false
false & true == false
false & false == false

AND short-circuits expression if left-hand side is false

| logical OR

true | true == true
true | false == true
false | true == true
false | false == false

OR short-circuits expression if left-hand side is true

% logical XOR (exclusive OR)

true % true == false
true % false == true
false % true == true
false % false == false

XOR always evaluates both sides of the expression

Bang operator

!! coerces any type into boolean, like so:

null -> false
zero (number) -> false
non-zero (number) -> true
empty (text/list/scope/chunk) -> false
non-empty (text/list/scope/chunk) -> true
method -> true
error -> false

logical AND/OR (&, |) and conditional flows (=>, ?) will implicitly coerce to boolean

See also

Boolean prototype extensions
Flow control

Number

27

Number
A mathematical concept used to count, measure and do other maths stuff.

Declaration

The Number type is implemented as double. Here's how to declare a number:

a = 5 # number declaration (immutable)
b: Number = 5 # same effect, with type-checking
c: Number = a # initiating from entry value, also 5
d = 43.14 # with decimals

To declare a mutable entry, prepend it with the tilde operator:

~ a = 6 # mutable number entry
a += 1 # adds 1 to 'a', yields 7

Operating numbers

Numbers accept quite a few operations:

== equal
!= not equal
+ plus
- minus
* multiply
/ divide
% modulus
** power
< less
<= less or equal
> more
>= more or equal
& logical AND
| logical OR

Caveats

For logical operations and flow control, keep in mind that zero is falsy and non-zero is truthy.

For equality operators, although 0 and null are evaluated as falsy, in FatScript they are not the same:

0 == null # false

Precision

Although the arithmetic precision of a IEEE 754 double is higher, fry employs rounding tricks to improve human
readability when printing long decimal sequences of nines or zeros as text. Additionally, it uses an epsilon of 1.0e-06 for
'equality' comparisons between numbers.

In 99.999% of use cases, this approach provides both more convenient comparisons and more natural-looking numbers:

Equality epsilon
x = 1.0e-06
x: Number = 0.000001

Smaller differences are treated as the "same" number by comparison
x == 0.0000015
Boolean: true # the 0.0000005 difference is ignored

Floating-point numbers aren't distributed evenly on the number line. They are dense around 0, and as the magnitude increases,
the 'delta' between two expressible values increases:

Number

28

_____________________________________0_____________________________________
+infinity | | | | | | ||| | | | | | | -infinity

the biggest contiguous integer is 9,007,199,254,740,992 or 2^53

You can still have much larger numbers, around 10^308, which is:

1000
00
00
000

Bear in mind that if you add 1 to 10^308, no matter how many times you do it, it will always result in the same value! You need
to add at least something near 10^293 in a single operation for it to be considered, as the numbers need to be of similar orders
of magnitude. To discreetly handle numbers exceeding 2^53, consider using the HugeInt type.

Also, the infinity keyword provides a clear, unambiguous representation of values that soar into the realms beyond the
largest expressible numbers, approaching the theoretical infinity.

See also

Number prototype extensions
Math library

HugeInt

29

HugeInt
An advanced numerical data type designed to handle very large integers.

Declaration

The HugeInt type supports integers up to 4096 bits. Here's how you can declare a HugeInt:

h = 0x123456789abcdef # HugeInt declaration

HugeInt is always expressed in hexadecimal format

Operating HugeInts

HugeInt supports a variety of operations, making it versatile for complex calculations:

== equal
!= not equal
+ plus
- minus
* multiply
/ divide
% modulus
** power
< less
<= less or equal
> more
>= more or equal
& logical AND
| logical OR

Caveats

In FatScript, HugeInt is specifically designed as an unsigned type, and thus it can only represent positive values.

Interactions between HugeInt and other numeric types, such as Number, are not directly available. To perform such
operations, you should convert the value to HugeInt using its constructor (available through the prototype extensions).

Precision

HugeInt offers high precision for very large integers, essential in fields like cryptography and large-scale computations. This
precision remains consistent across its entire range.

prime = 0xfffffffffffffffc90fdA... # a large prime number

Contrary to floating-point numbers, HugeInt represents discrete integer values, maintaining consistent precision and spacing
throughout its range:

0__
| | | | | | | | | overflow

the maximum value is 2^4096 - 1, equivalent to a number with 1233 decimal digits or the 0xfff... literal (with 1024
repetitions of the letter f)

HugeInt is particularly well-suited for scenarios that demand exact integer arithmetic without rounding errors, especially
when dealing with values far beyond the limits of Number type. It is important to ensure that all operations remain within its
supported capacity, as exceeding this limit will raise a ValueError.

See also

HugeInt prototype extensions

Text

30

Text
Texts can hold many characters, and are sometimes referred to as strings.

Declaration

Text entries are declared using quotes:

a = 'hello world' # smart text declaration
a = "hello world" # raw text declaration
a: Text = 'hello world' # smart, optionally verbose

Manipulating text

Concatenation

In FatScript, you can concatenate, or join, two texts using the + operator. This operation connects the two texts into one. For
example:

x1 = 'ab' + 'cd' # Outputs 'abcd'

Text Subtraction

FatScript also supports a text subtraction operation using the - operator. This operation removes a specified substring from the
text. For instance:

x2 = 'ab cd'
x2 - ' ' == 'abcd' # Outputs true

In the above example, the space character ' ' is removed from the original text 'ab cd', resulting in 'abcd'.

Text Selection

Selection allows you to access specific parts of a text using indices. In FatScript, you can use either positive or negative indices.
Positive indices start from the beginning of the text (0 is the first character), and negative indices start from the end of the text
(-1 is the last character).

for detailed explanation about the indexing system in FatScript, refer to the section on accessing and selecting items in List

When only one index is passed to the selection function, a single character from the text is selected. When two indices are
passed to the function, a range of characters from the text is selected. This selection is inclusive, meaning that it includes the
characters at both the start and end indices, unless using half-open range operator ..< exclusive on the right-hand side.

Like with lists, accessing items that are out of valid indices will generate an error. For selections, no errors are generated when
accessing out-of-bounds indices; instead, an empty text is returned.

x3 = 'example'
x3(1) # 'x'
x3(2, 4) # 'amp'
x3(..2) # 'exa'
x3(..<2) # 'ex'

Special characters

Characters such as quotes ' / " can be escaped with backslash \.

'Rock\'n\'roll'
"Where is \"here\"?"

you only need to escape quotes of same type used as text delimiter

Other supported escape sequences are are:

backspace \b
new line \n

Text

31

carriage return \r
tab \t
escape \e
octet in base-8 representation \ooo
backslash itself \\

Smart texts

When declared with single quotes ', the smart mode is enabled, and interpolation is performed for any code wrapped in curly
brackets {...}:

text = 'world'
interpolated = 'hello {text}' # outputs 'hello world'

the template is processed in a layer with access to current scope

Note that the use of new lines or other smart texts inside the interpolation template code is not supported, but you can make
method calls if you need to compose the result with something more complex.

You can avoid interpolation by escaping the opening bracket:

escaped = 'hello \{text}' # outputs 'hello {text}'

Alternatively, you can avoid interpolation by using raw texts.

Raw texts

When declared with double quotes " the raw text mode is assumed and interpolation is disabled.

Smart mode vs. raw mode example:

'I am smart: {interpolated}' # using value from previous example
I am smart: hello world # replacement occurs

"I am raw: {interpolated}" # brackets are just common characters
I am raw: {interpolated} # no interpolation occurs

Operating texts

== equal
!= not equal
+ plus (concatenate)
- minus (removes substring)
< less (alphanumeric)
<= less or equal (alphanumeric)
> more (alphanumeric)
>= more or equal (alphanumeric)
& logical AND (coerced to boolean)
| logical OR (coerced to boolean)

Encoding

FatScript is designed to operate with text encoded in UTF-8 or ASCII. This design choice acknowledges the prevalence of these
encoding systems and optimizes the language for broad compatibility.

UTF-8 is a multi-byte encoding system capable of representing any character in the Unicode standard. This universal character
encoding scheme uses 8 to 32 bits to represent a character, enabling the depiction of a vast array of symbols from numerous
languages and writing systems. Notably, the first 128 characters (0-127) of UTF-8 align precisely with the ASCII set, making
any ASCII text a valid UTF-8 encoded string.

In FatScript, the Text data type is a sequence of Unicode characters, inherently encoded in UTF-8, therefore operations such as
text.size, text(index), and text(1..4) will correctly count, access, or slice text irrespective of the complexity of
the characters. These operations consider a complete multi-byte UTF-8 character as a single unit, ensuring correct and
predictable behavior.

Text

32

By assuming UTF-8 encoding for text, FatScript ensures seamless interoperability with existing standards, broadens its
applicability across various languages and scripts, and enhances its user experience by treating texts as logically contiguous
sequences of characters.

See also

Text prototype extensions

Method

33

Method
Methods are recipes that can take arguments to "fill in the blanks".

Definition

A method is anonymously defined with a thin arrow ->, like so:

<parameters> -> <recipe>

Parameters can be omitted if none are needed:

-> <recipe> # arity zero

To register a method to the scope, assign it to an identifier:

<identifier> = <parameters> -> <recipe>

Parameters within a method's execution scope are immutable, ensuring that the method's operations do not alter their original
state. For mutable behavior, consider passing a scope or utilizing a custom type capable of encapsulating multiple values and
states.

Optional parameters

While method signatures typically require a fixed number of mandatory parameters, FatScript supports optional parameters
through default values:

greet = (message: Text, name: Text = 'World') -> {
 "Hello, {name}, {message}"
}

In this example, the name parameter is optional, defaulting to 'World' if no argument is provided. This feature allows for more
flexible method invocations.

Argument handling

Method calls in FatScript are designed to accept more arguments than required; extra arguments are simply ignored. This
behavior is part of the language's design to enhance flexibility and performance.

Auto-return

FatScript uses auto-return, meaning the last standing value is returned:

answer: Method = (theGreatQuestion) -> {
 # TODO: explain Life, the Universe and Everything
 42
}

answer("6 x 7 = ?") # outputs: 42

Automatic calls

FatScript introduces a unique feature that simplifies method calls, when no arguments are involved. This feature is known as
the "automatic call trick" and it offers several key benefits:

Reduced Boilerplate: Reduces the need for parentheses, making code cleaner and more concise, for zero-parameter
methods that act like properties.

Dynamic Computation: Allows for dynamic computation with outputs that can change based on the object's internal
or global state.

Deferred Execution: Enables deferred execution, useful in asynchronous programming and complex initialization
patterns.

Method

34

Basic usage

In FatScript, a method defined without parameters is executed "automagically" when referenced:

foo = {
 bar = -> 'Hello!'
}

Both lines below output 'Hello!'
foo.bar() # explicit call
foo.bar # automatic call

Referencing

To reference a method without triggering the automatic calling feature, you can use the the get syntax:

foo('bar') # yields a reference to foo.bar, without calling it

FatScript also offers self and root keywords to reference methods at the local and global levels, respectively:

self('myLocalMethod')
root('myGlobalMethod')

Opting out of automatic calls

The tilde ~ operator allows you to bypass the automatic call feature, providing flexibility in method handling:

Both lines below fetch the method reference, without calling it
foo.~bar
~ myMethod

Or you can simply wrap the method call into yet another (anonymous) method:

-> foo.bar

Passing methods as arguments

There's an important exception when it comes to passing methods as arguments, specifically in the case of a local method:

another(bar) # passes `bar` as a reference, without executing it

however, this does not apply with chaining: another(foo.bar) passes the result of bar, not the reference

In this case, to pass the value resulting of the local method bar, an explicit call must be made:

another(bar())

this behavior might seem counterintuitive, but it is extremely useful in various use cases, such as when passing methods to
reduce, to an asynchronous task, to a mapping operation etc.

Implicit argument

A convenience offered by FatScript is the ability to reference a value passed to the method without explicitly specifying a name
for it. In this case, the implicit argument is represented by the underscore _.

Here's an example that illustrates the use of implicit argument:

double = -> _ * 2
double(3) # output: 6

You can use an implicit argument whenever you need to perform a simple operation on a single parameter without assigning a
specific name to it, but note that the method must have arity zero to trigger it.

See also

Method prototype extensions

List

35

List
Lists are ordered collections of items of the same type, accessed by index.

Definition

Lists are defined with square brackets [], like so:

list: List/Text = ['apple', 'pizza', 'pear']

Lists do not allow mixing of types. The type of a list is determined by the first item added to it, consequently, empty lists are
untyped.

Lists skip empty positions, so an item that evaluates to null is ignored:

a = 1
c = 3
[a, b, c] # outputs: [1, 3] (b is skipped over)

Access

Individual items

List items can be accessed individually with zero-based index call:

list(0) # 'apple'
list(2) # 'pear'

Negative values will index backwards, starting from -1 as the last item:

list(-1) # 'pear'

Accessing items that are out of valid indices will generate an error:

 0 1 2 > 2
Error ['apple', 'pizza', 'pear'] Error
 < -3 -3 -2 -1

Selections

You can pass a second argument to perform an access call as a selection from "start" to "end" index, evaluating as inclusive
indices.

Indexes for start and end work exactly the same as when accessing individual items, so negatives count from the last item and
can be regressive. However, when using selections, no errors are generated when accessing out-of-bounds indices; instead, an
empty list is returned.

list(0, 0) # ['apple']
list(4, 8) # []
list(1, -1) # ['pizza', 'pear']

The same works for range syntax (..):

list(0..0) # ['apple']
list(4..8) # []
list(1..-1) # ['pizza', 'pear']

Yet, with ranges, one index can be left blank, and it assumes start from the first or end on the last item:

list(..1) # ['apple', 'pizza']
list(1..) # ['pizza', 'pear']

Nested lists

A matrix can be used and accessed like so:

List

36

matrix = [
 [1, 2, 3]
 [4, 5, 6]
]

matrix(1)(0) # yields 4 (1: second line, then 0: first index)

for simplicity, the example uses a 2D matrix, but could be n-dimensional

Operations

== equal
!= not equal
+ addition (concatenation effect)
- subtraction (difference effect)
& logical AND
| logical OR

logical AND/OR evaluate empty lists as false, otherwise true

List addition (concatenation)

The list addition operation allows you to combine two lists into a new list:

x = [1, 2, 2, 3]
y = [3, 3, 4, 4]

x + y # result: [1, 2, 2, 3, 3, 3, 4, 4]

In this case, using the addition operator + to merge lists x and y, the elements from both lists are combined into a single list.
The order of the elements in the resulting list is determined by the order in which the lists were added.

there is no removal of duplicate elements during the concatenation

Quick-append

For better performance, you can take advantage of += operator, e.g.:

~ list += [value] # faster

same effect as
~ list = []
list = list + [value] # concatenation (slower)

Another detail of the += operator, which also applies to other types, is the automatic initialization by omission, where if the
entry has not yet been declared previously, it acts as a simple assignment.

List subtraction (difference)

The list subtraction operation allows you to remove elements from the second operand that are present in the first operand,
resulting in a list containing only unique values:

x = [1, 2, 2, 3]
y = [3, 3, 4, 4]

x - y # result: [1, 2]
y - x # result: [4]

In this case, when we subtract the list y from the list x, the elements with the value 3 are removed because they are present in
both lists. The result is the list [1, 2]. Similarly, when we subtract the list x from the list y, the only remaining element is the
value 4.

only exactly identical values are removed during the subtraction

See also

List prototype extensions
Mapping over a List

Scope

37

Scope
A scope is akin to a dictionary, where keys are associated with values.

Definition

Scopes are defined using curly brackets {}, as shown below:

myCoolScope = {
 place = 'here'
 when = 'now'
}

Scopes store entries in alphabetical order, a characteristic that becomes apparent when mapping over a scope.

Access

There are three ways you can directly access entries inside a scope.

Dot syntax

myCoolScope.place # output: 'here'

Get syntax

assuming prop = 'place'
myCoolScope(prop) # output: 'here'

In both methods, if the property is not present, null is returned. If the outer scope is not found, an error is raised.

Optional chaining syntax

Use the question-dot ?. operator to safely chain potentially non-existent outer scopes:

nonExisting?.prop # returns null

The optional chaining syntax does not raise an error when the outer scope is null.

Operations

== equal
!= not equal
+ addition (merge effect)
- subtraction (difference effect)
& logical AND
| logical OR

logical AND/OR evaluate empty scopes as false, otherwise true

Scope addition (merge)

The second operand acts as a patch for the first operand:

x = { a = 1, b = 3 }
y = { b = 2 }

x + y # results in { a = 1, b = 2 }
y + x # results in { a = 1, b = 3 }

values from the second operand replace those from the first

Scope subtraction (difference)

Subtraction removes elements from the first operand that are identical to those in the second operand:

Scope

38

x = { a = 1, b = 3 }
y = { a = 1 }

x - y # results in { b = 3 }

only values that are exactly identical are removed

Scoped Blocks

Scoped Blocks in FatScript allow for executing statements within the context of a specific scope:

object.{
 # Statements executed in the context of 'object'
}

Here, object is the target scope. Within the block, you can directly access and modify object's properties.

Features

Isolation: entries declared within a Scoped Block are local to that block and do not affect the outer scope
Outer Scope Access: Scoped Blocks can access entries from the outer scope

Example

x = {}

x.{
 a = 5 # 'a' is now a property of 'x'
 b = a + 3 # 'b' is also a property of 'x'
}

Scope interactions

FatScript uses sophisticated mechanisms for managing variables across different scopes, leveraging concepts of lexical scoping
and shadowing to provide powerful programming capabilities. This section explores these mechanisms, including assignment
nuances, increment/decrement behaviors, and the innovative use of the += operator for boolean toggling.

Assignment

The assignment operator (=) copies values from outer scopes into current scope, defining a new value:

~ n = 1
x = {}
x.{ ~ n = n } # now x.n == 1, and x.n is independent from root.n
x.{ c = n } # has similar effect, however 'c' is immutable

the same concept applies to code running on a method scope

Caveat

Using ~ n = n + 1 inside a block or method adds a new 'n' in the current scope, initialized with the value of n + 1 from
the nearest enclosing scope, without altering the outer n.

Incrementing and decrementing

Increment (+=) and decrement (-=) operations, interact with variable scoping in a different way. These operations search for the
nearest instance of a variable, starting from the current scope and moving outward recursively, and then modify that instance
directly.

~ outerN = 1
fn = -> {
 outerN += 1 # targets and increments 'outerN' in the outer scope
}

Auto-initialization with +=

Scope

39

FatScript also provides a special behavior regarding increment operator (+=). If the entry doesn't exist, increment works as a
regular assignment as if you had written the following for n += 1:

n == Void ? n = 1 : n += 1

The auto-initialization feature can be particularly useful when used in combination with dynamic entries for dynamic
programming.

this feature is exclusively available for increment operator, decrement can't initialize non-existent values

Boolean toggling with +=

Generally, booleans don't allow addition operations. FatScript, however, extends the += operator's functionality to boolean
types, allowing for an intuitive toggle mechanism within inner scopes.

The expression flag += !flag effectively toggles the boolean value, even when flag is defined in an outer scope.

in the particular case of booleans, the only distinction between = and += is scoping

See also

Dynamic entries
Scope prototype extensions
Mapping over a scope

Error

40

Error
There is great wisdom in expecting the unexpected too.

Default subtypes

While some generic errors like syntax issues, invalid imports etc. are raised with the base Error type, some others are subtyped.

See the definitions in the error prototype extensions.

Declaration

Errors can also be declared explicitly; you must use the type constructor:

_ <- fat.type.Error

Error('an error has ocurred') # raises a generic error

MyMistake = Error
MyMistake('another error has ocurred') # raises a MyMistake subtype error

Comparisons

Errors always evaluate as falsy:

Error() ? 'is truthy' : 'is falsy' # is false

Errors are comparable to their type:

Error() == Error # true

read also about type comparison syntax

A naive way of handling errors could be:

_ <- fat.console
handling the returned error
maybeFail() <= Error => log('an error has happened')
_ => log('success')

this only works if option -e / continue on error is set

Another naive way to deal with errors, but one that always works, is to use a default operation:

maybeFail() ?? log('an error occurred')

Although the naive approach may work, the proper way to deal with errors is by setting an error handler using the trapWith
method found in the failure library.

See also

Failure library
Error prototype extensions

Chunk

41

Chunk
Chunks are just binary blocks of data.

Declaration

Chunks cannot be declared explicitly; you must use the type constructor and apply one of the following strategies:

_ <- fat.type.Chunk

Chunk(null) # Void -> (empty chunk)
Chunk(true) # Boolean -> '\001'
Chunk(65) # Number -> 'A'
Chunk('ABC') # Text -> 'ABC'
Chunk([65, 66, 67]) # List/Number -> 'ABC'

numbers are expected to be valid byte values (0-255), otherwise an error is raised

Manipulating Chunks

Concatenation

In FatScript, you can concatenate, or join, two chunks using the + operator. For example:

abCombined = chunkA + chunkB

Chunk Selection

Selection allows access to specific parts of a chunk using indices. FatScript supports both positive and negative indices.
Positive indices start from the beginning of the chunk (with 0 as the first byte), while negative indices start from the end (-1 is
the last byte).

for detailed explanation about the indexing system in FatScript, refer to the section on accessing and selecting items in List

Selecting with one index retrieves a single byte from the chunk (as number). Using two indices selects a range of bytes,
inclusive of both start and end indices, except when using the half-open range operator ..<, which is exclusive on the right-
hand side.

Accessing indices outside the valid range will generate an error for individual selections. For range selections, out-of-bounds
indices result in an empty chunk.

x3 = Chunk('example')
x3(1) # 120 (ASCII value of 'x')
x3(..2) # new Chunk containing 3 bytes (corresponding to 'exa')

Comparisons

Chunk equality == and inequality != comparisons are supported.

See also

Chunk prototype extensions

Flow control

42

Flow control
Move along in a continuous stream of decisions that should be made.

Fallback

Default or nullish coalescing operations, are defined with double question marks ?? and work the following way:

<maybeNullOrFailedExpression> ?? <fallbackValue>

In case the left-hand side is not null nor Error, then it's used; otherwise, the fallback value is returned.

similarly you can use the nullish coalescing assign operator ??=

If

If statements are defined with a question mark ?, like so:

<condition> ? <response>

as there is no alternative null is returned if condition is not met

If-Else

If-Else statements are defined with a question mark ? followed by a colon :, like so:

<condition> ? <response> : <alternativeResponse>

To use multiline If-Else statements, wrap the response in curly brackets {...} like so:

<condition> ? {
 <response>
} : {
 <alternativeResponse>
}

Cases

Cases are defined with the thick arrow => and are automatically chained, creating an intuitive and streamlined syntax similar to
a switch statement without the possibility of fall-through. This allows for unrelated conditions to be mixed together, ultimately
resulting in a more concise if-else-if-else structure:

<condition1> => <responseFor1>
<condition2> => <responseFor2>
<condition3> => <responseFor3>
...

Example:

choose = (x) -> {
 x == 1 => 'a'
 x == 2 => 'b'
 x == 3 => 'c'
}

choose(2) # 'b'
choose(8) # null

To provide a default value for your method, you can add a catch-all case using an underscore _ at the end of the sequence:

choose = (x) -> {
 x == 1 => 'a'
 x == 2 => 'b'
 x == 3 => 'c'
 _ => 'd'
}

Flow control

43

choose(2) # 'b'
choose(8) # 'd'

For more complex scenarios, you can use blocks as outcomes for each case:

...
 condition => {
 # do something
 'foo'
 }
 _ => {
 # do something else
 'bar'
 }
...

Cases must end in a catch-all case _ or end of block. The most effective use of Cases is within methods at the bottom of the
method body.

While it's possible to add nested Cases, it's best to avoid overly complex constructions. This makes code harder to follow and
likely misses the point of using this feature.

It may be more appropriate to extract that logic into a separate method. FatScript encourages developers to split logic into
distinct methods, helping to prevent spaghetti code.

Switch

The Switch operator is denoted by the >> symbol, which guides the flow of control based on the value's match against a series
of cases:

Syntax:

<value> >> {
 <caseValue1> => <responseFor1>
 <caseValue2> => <responseFor2>
 ...
 _ => <defaultResponse>
}

Each case in the Switch block is evaluated in order until a match is found and the result of the matching case is returned:

choose = -> _ >> {
 1 => 'one'
 2 => 'two'
 3 => 'three'
 _ => 'other'
}

choose(2) # 'two'
choose(4) # 'other'

Switch cases can also involve expressions, allowing for dynamic matching:

evaluate = (x, y) -> x >> {
 y + 1 => 'just above y'
 y - 1 => 'just below y'
 _ => 'not directly around y'
}

evaluate(5, 4) # 'just above y'
evaluate(3, 4) # 'just below y'
evaluate(7, 4) # 'not directly around y'

Loops

44

Loops
Repeat, repeat, repeat, repeat, repeat...

Base syntax

All loops are build with an "at" sign @, like so:

<expression> @ <loopBody>

While loop

The loop body will execute while the expression evaluates to:

true
non-zero number
non-empty text

The execution will terminate when the expression evaluates to:

false
null
zero number
empty text
error

For example, this loop prints numbers 0 to 3:

_ <- fat.console

~ i = 0

(i < 4) @ {
 log(i)
 i += 1
}

Mapping syntax

You can map over ranges, lists and scopes with a mapper, like so:

<range|collection> @ <mapper>

A new list is generated based from the return values of the mapper.

Mapping over a range

Using range operator .. the mapper will receive a number as input sequentially from the left bound to the right bound:

4..0 @ num -> num + 1 # returns [5, 4, 3, 2, 1]

range syntax is inclusive on booth sides, e.g. 0..2 yields 0, 1, 2

There is also half-open range operator ..< exclusive on the right-hand side.

caveat: half-open range won't work with reverse direction, always needs to be from the minimum to maximum

Mapping over a list

The mapper will receive items in order (from left to right):

[3, 1, 2] @ item -> item + 1 # returns [4, 2, 3]

Mapping over a scope

The mapper will receive the names (keys) of the entries stored in the scope in alphabetical order:

Loops

45

{ c = 3, a = 1, b = 2 } @ key -> key # yields ['a', 'b', 'c']

on the examples we have used list and scope literals, but an entry or call that evaluates to a list or a scope will have the
same effect

To access entries in a scope, you refer to it by name, but in this case, it needs to be defined in the outer scope, for example:

myScope = { c = 3, a = 1, b = 2 }
myScope @ key -> myScope(key) # returns [1, 2, 3]

FatScript uses an intelligent caching feature that prevents this syntax from generating additional effort to search for the current
element in the scope while mapping.

Libraries

46

Libraries
Let's talk about the sweet fillings baked into FatScript: the libraries!

Standard libraries

Essentials

These are the fundamental libraries you would expect to be available in a programming language, providing essential
functionality:

async - Asynchronous workers and tasks
color - ANSI color codes for console
console - Console input and output operations
curses - Terminal-based user interface
enigma - Cryptography, hash and UUID methods
failure - Error handling and exception management
file - File input and output operations
http - HTTP handling framework
math - Mathematical operations and functions
recode - Data conversion between various formats
sdk - Fry's software development kit utilities
system - System-level operations and information
time - Time and date manipulation

Type Package

This package extends the features of FatScript's native types:

Void
Boolean
Number
HugeInt
Text
Method
List
Scope
Error
Chunk

Extra package

Additional types implemented in vanilla FatScript:

Date - Calendar and date handling
Duration - Millisecond duration builder
HashMap - Quick key-value store
Logger - Logging support
Memo - Generic memoization utility
Option - Encapsulation of optional value
Sound - Sound playback interface
Storable - Data store facilities

Import-all shorthand

If you want to make all of them available at once, you can simply do the following, and all that good stuff will be available to
your code:

_ <- fat._

While this feature can be convenient when experimenting on the REPL, be aware that it brings in all the library's constants and
method names, potentially polluting your global namespace.

Libraries

47

fat.std

Alternatively, import the "standard" library, which imports all types (including those from the extra package), as well as named
imports from all other packages, like this:

_ <- fat.std

This is equivalent to:

_ <- fat.type._
_ <- fat.extra._
async <- fat.async
color <- fat.color
console <- fat.console
curses <- fat.curses
enigma <- fat.enigma
failure <- fat.failure
http <- fat.http
file <- fat.file
math <- fat.math
recode <- fat.recode
sdk <- fat.sdk
system <- fat.system
time <- fat.time

Note that importing everything in advance can add unnecessary overhead to the startup time of your program, even if you only
need to use a few methods.

As a best practice, consider importing only the specific modules you need, with named imports. This way, you can keep your
code clean and concise, while minimizing the risk of naming conflicts or performance issues.

Hacking and more

Under the hood, libraries are built using embedded commands. To gain a deeper understanding and explore the inner workings
of the interpreter, dive into this more advanced topic.

async

48

async
Asynchronous workers and tasks

Import

_ <- fat.async

Types

The async library introduces the Worker type.

Worker

The Worker is a simple wrapper around an asynchronous operation.

Constructor

Name Signature Brief
Worker (task: Method, wait: Number) Builds a Worker in standby mode

The Worker constructor takes two arguments:

task: The method to be executed asynchronously (the method may not take arguments directly, but you may curry
those in using two arrows on the definition -> ->).
wait (optional): A timeout in milliseconds. If the task does not finish within this time, it is cancelled.

Prototype members

Name Signature Brief
start (): Worker Begins the task
cancel (): Void Cancels the task
await (): Worker Waits for task completion
isDone (): Boolean Checks if the task has completed
hasStarted Boolean Set by start method
hasAwaited Boolean Set by await method
isCanceled Boolean Set by cancel method
result Any Set by await method

Standalone Methods

Name Signature Brief
atomic (op: Method): Any Executes the operation atomically
selfCancel (): * Terminates the execution of the thread
processors (): Number Get the number of processors

Usage Notes

Worker instances are mapped to system threads on a one-to-one basis and get executed as per the system's scheduling. This
implies that their execution may not always be immediate. To wait for the result of a Worker, employ the await method.

Unlike in other contexts, in asynchronous code, the task: Method executes without access to the scope in which it is
created. It can only access properties that have been 'curried' -> -> into its execution scope or those that are directly
accessible in the global scope.

to keep maximum performance, avoid using text interpolation within asynchronous tasks

Examples

async

49

async <- fat.async
math <- fat.math
time <- fat.time

Define a slow task
slowTask = (seconds: Number): Text -> -> {
 time.wait(seconds * 1000)
 'done'
}

Start the task as a Worker
worker = Worker(slowTask(5)).start

Get the worker result
result1 = worker.await.result # blocks until task is done

Start a task with timeout
task = Worker(slowTask(5), 3000).start # task should timed out

Get the task result
result2 = task.await.result # blocks until task is done or timeout occurs

the await method will raise AsyncError if the task times out before completion

atomic

The atomic wrapper is a critical tool for ensuring thread safety and data integrity in concurrent programming. When multiple
workers or asynchronous tasks access and modify shared resources, race conditions can occur, leading to unpredictable and
erroneous outcomes. The atomic operation addresses this issue by guaranteeing that the method it wraps is executed
atomically. This means the entire operation is completed as a single, indivisible unit, with no possibility of other threads
intervening partway through for the same operation. This is particularly important for operations such as incrementing a
counter, updating shared data structures or files, or performing any action where the order of execution matters:

async.atomic(-> file.append(logFile, line))

While atomic operations are a powerful tool for ensuring consistency, it's important to be mindful of the potential for
contention it introduces. Contention occurs when multiple threads or tasks attempt to execute an operation simultaneously,
leading to potential performance bottlenecks as each thread waits its turn. Overuse or unnecessary use of atomic operations
can significantly degrade the performance of your application by reducing concurrency. Keep only the critical section of code
that absolutely requires atomicity enclosed as an atomic operation.

under the hood, atomic operations are fundamentally guarded by a single global mutex

Async in Web Build

When using fry built with Emscripten (for example, when using FatScript Playground), the platform's limited support for
multi-threading affects the Worker implementation. To maximize cross-platform code compatibility, Worker tasks execute
inline and block the main thread when the start method is called. This approach compromises the advantages of
asynchronous execution but allows a consistent implementation across platforms in many scenarios.

See also

Time library

color

50

color
ANSI color codes for console

Import

_ <- fat.color

Constants

black, 0
red, 1
green, 2
yellow, 3
blue, 4
magenta, 5
cyan, 6
white, 7
bright.black, 8
bright.red, 9
bright.green, 10
bright.yellow, 11
bright.blue, 12
bright.magenta, 13
bright.cyan, 14
bright.white, 15

Methods

Name Signature Brief
detectDepth (): Number Get console color support
to8 (xr: Any, g: Number = ø, b: Number = ø) Convert RGB to 8-color mode
to16 (xr: Any, g: Number = ø, b: Number = ø) Convert RGB to 16-color mode
to256 (xr: Any, g: Number = ø, b: Number = ø) Convert RGB to 256-color mode

Usage Notes

to8, to16 and to256

The parameter xr can be an optional text representing the color in HTML format. For example, it can be provided as 'fae830'
or '#fae830' (yellow):

color <- fat.console
console <- fat.console

console.log('hey', color.to16('fae830'))
console.log('hey', color.to256('fae830'))

However, if xr is a number between 0 and 255 representing r, then the g and b parameters will be required:

console.log('hey', color.to256(250, 232, 48)) // same result

these methods may produce approximations of the original color in 8, 16 or 256 depths and not the exact true color

See also

Console library
Curses library
256 Colors

https://www.ditig.com/256-colors-cheat-sheet

console

51

console
Console input and output operations

Import

_ <- fat.console

Methods

Name Signature Brief
log (msg: Any, fg: Number = ø, bg: Number = ø): Void Print msg to stdout, with newline
print (msg: Any, fg: Number = ø, bg: Number = ø): Void Print msg to stdout, without newline
stderr (msg: Any, fg: Number = ø, bg: Number = ø): Void Print msg to stderr, with newline
input (msg: Any, mode: Text = ø): Text Print msg and return input of stdin
flush (): Void Flush stdout buffer
cls (): Void Clear stdout using ANSI escape codes
moveTo (x: Number, y: Number): Void Move cursor using ANSI escape codes
isTty (): Boolean Check if stdout a terminal device
showProgress (label: Text, fraction: Number): Void Render progress bar, fraction 0 to 1

the methods log, stderr and input ensure thread safety in asynchronous scenarios

Usage Notes

output

By default, stdout and stderr both print to the console. The foreground color (fg) and background color (bg) parameters
are optional.

colors are automatically suppressed if the output buffer is not a TTY

input

The optional mode parameter accepts the following values:

'plain', plain input (no readline cursor, no history)
'quiet', like plain mode, but without feedback
'secret', special mode for password input
null (default), with readline and input history

See also

Color library
Curses library

curses

52

curses
Terminal-based user interface

although the inspiration is acknowledged, FatScript has it's own way of approaching terminal UI which differs in many
ways from the original curses library

Import

_ <- fat.curses

Methods

Name Signature Brief
box (p1: Scope, p2: Scope): Void Draw square from pos1 to pos2
fill (p1: Scope, p2: Scope, p: Text = ' '): Void Fill from pos1 to pos2 with p
clear (): Void Clear screen buffer
refresh (): Void Render screen buffer
getMax (): Scope Return screen size as x, y
printAt (pos: Scope, msg: Any, width: Number = ø): Void Print msg at { x, y } pos
makePair (fg: Number = ø, bg: Number = ø): Number Create a color pair
usePair (pair: Number): Void Apply color pair
frameTo (cols: Number, rows: Number) Align view to screen center
readKey (): Text Return key pressed
readText (pos: Scope, width: Number, prev: Text = ø): Text Start a text box input
flushKeys (): Void Flush input buffer
endCurses (): Void Exit curses mode

positions (pos) are of form { x: Number, y: Number }

the methods in this library do not ensure thread safety in asynchronous scenarios, use either the main thread or a single
worker to render console updates

Usage Notes

Any method of this library, except getMax and endCurses, will start curses mode if not yet started. Note that methods such
as log, stderr and input from console library will implicitly call endCurses. However, moveTo, print and flush
will not change the output mode, and can be paired with curses methods, which can be useful in some circumstances.

The letters x and y stand for column and row respectively when calling printAt, where (0, 0) is the upper-left corner and the
result of getMax is the just the first coordinate outside the lower-right corner.

special characters on curses only work if a UTF-8 locale can be set

makePair

You can import the color library to use color names and create a combination of foreground and background (pair). Pass null
to apply the default color to the desired parameter.

usePair

The input of this method should be a color pair created with makePair method. It leaves this pair enabled until you call it
again with a different pair.

readKey

This method is non-blocking and returns null if stdin is empty, otherwise it will return one character at a time.

Special keys may be detected and return keywords such as:

curses

53

arrow keys:
up
down
left
right

edit keys:
delete
backspace
enter
space
tab
backTab (shift+tab)

control keys:
pageUp
pageDown
home
end
insert
esc

other:
resize (terminal window was resized)

the correct detection of keys can depend on the context or platform

readText

Enters text capture mode using an area demarcated by position and width of the text box. If the text is larger than the space, an
automatic text scroll is performed. The full text is returned when enter or tab is pressed, however, if esc is pressed, null
is returned.

See also

Color library
Console library

enigma

54

enigma
Cryptography, hash and UUID methods

Import

_ <- fat.enigma

Methods

Name Signature Brief
getHash (msg: Text): Number Get 32-bit hash of text
genUUID (): Text Generate a UUID (version 4)
genKey (len: Number): Text Generate random key
derive (secret: Text): Text Key derivation function
encrypt (msg: Text, key: Text = ø): Text Encrypt msg using key
decrypt (msg: Text, key: Text = ø): Text Decrypt msg using key

derive is deterministic and uses the Base64 alphabet for a 32 chars output

Usage Notes

You can omit or pass a blank key '' for using the default key.

Heads Up!

Although enigma makes encrypted text "non-human-readable", this schema is not cryptographically safe! DO NOT use it
alone to protect data!

If paired with a custom key that is not stored alongside the message it may offer some data protection.

UUID method conformance

A UUID, or Universally Unique Identifier, is a 128-bit number used to identify objects or entities in computer systems. The
provided implementation generates random UUIDs as text that follow the format of version 4 RFC 4122 specification, but does
not strictly adhere to the required cryptographically secure randomness. In practice, the collision risk has an extremely low
probability and is very unlikely to occur, and for most applications can be considered good enough.

failure

55

failure
Error handling and exception management

Import

_ <- fat.failure

Methods

Name Signature Brief
trap (): Void Apply generic error handler
trapWith (handler: Method): Void Set a handler for errors in context
untrap (): Void Unset error handler in context

Usage Notes

When an error is created if an error handler is found, seeking from inner to outer execution context, the handler wrapping the
failure is automatically invoked with that error as argument, and the calling context is exited with return value of the error
handler.

it's not possible to set a handler for the global scope

trapWith

This method binds an error handler to the context of the calling site, e.g. when used inside a method it will only protect the
logic executed inside the body of that method.

Example

Define an error handler that prints the error and exits:

console <- fat.console
system <- fat.system
sdk <- fat.sdk

simpleErrorHandler = (error) -> {
 console.log(error)
 sdk.printStack(10)
 system.exit(system.failureCode)
}

Finally, use trapWith method to assign the error handler:

failure <- fat.failure
failure.trapWith(simpleErrorHandler)

Trap it!

You can handle expected errors or pass through the unexpected:

failure <- fat.failure
_ <- fat.type.Error

MyError = Error

errorHandler = -> _ >> {
 MyError => 0 # handle (expected)
 _ => _ # pass through (unexpected)
}

unsafeMethod = (n) -> {
 failure.trapWith(errorHandler)

failure

56

 n < 10 ? MyError('arg is less than ten')
 n - 10
}

In this case the program will not crash if you call unsafeMethod(5), but if you comment out the trapWith line, you will
see it crashing with MyError.

See also

Error (syntax)
Error prototype extensions
Flow control

file

57

file
File input and output operations

Import

_ <- fat.file

Type contributions

Name Signature Brief
FileInfo (modTime: Epoch, size: Text) File metadata

Methods

Name Signature Brief
basePath (): Text Extract path where app was called
exists (path: Text): Boolean Check file exists on provided path
read (path: Text): Text Read file from path (text mode)
readBin (path: Text): Chunk Read file from path (binary mode)
write (path: Text, src): Boolean Write src to file and return success
append (path: Text, src): Boolean Append to file and return success
remove (path: Text): Boolean Remove file and return success
isDir (path: Text): Boolean Check if path is a directory
mkDir (path: Text, safe: Boolean) Create a directory
lsDir (path: Text): List Get list of files in a directory
stat (path: Text): FileInfo Get file metadata

Usage Notes

read

On exception:

logs error to stderr
returns null

read cannot see builtin "files", but readLib from SDK lib can

write/append

Exceptions:

logs error to stderr
returns false

mkDir

If safe is set to true, the directory gets 0700 permission instead of default 0755, which is less protected.

See also

Recode library

http

58

http
HTTP handling framework

Import

_ <- fat.http

Route

A route is a structure used to map HTTP methods to certain path patterns, specifying what code should be executed when a
request comes in. Each route can define a different behavior for each HTTP method (POST, GET, PUT, DELETE).

Constructor

Name Signature Brief
Route (path: Text, post: Method, get: Method, put: Method, delete: Method) Constructs a Route object

each implemented method receives an HttpRequest as argument and shall return an HttpResponse object

HttpRequest

An HttpRequest represents an HTTP request message. This is what your server receives from a client when it makes a
request to your server.

Constructor

Name Signature Brief
HttpRequest (method: Text, path: Text, params: Scope, headers: List/Text, body: Any) Constructs an HttpRequest object

HttpResponse

An HttpResponse represents an HTTP response message. This is what a server sends back to the client in response to an
HTTP request.

Constructor

Name Signature Brief
HttpResponse (status: Number, headers: List/Text, body: Any) Constructs an HttpResponse object

Methods

Name Signature Brief
setHeaders (headers: List): Void Set headers of requests
post (url: Text, body, wait): HttpResponse Create/post body to url
get (url: Text, wait): HttpResponse Read/get from url
put (url: Text, body, wait): HttpResponse Update/put body to url
delete (url: Text, wait): HttpResponse Delete on url
setName (name: Text): Void Set user agent/server name
verifySSL (enabled: Boolean): Void SSL configuration (client mode)
setSSL (certPath: Text, keyPath: Text): Void SSL configuration (server mode)
listen (port: Number, routes: List/Route) Endpoint provider (server mode)

body: Any and wait: Number are always optional parameters, being that if body does not fall under Text or
Chunk, it will be automatically converted to JSON during the send process, and wait is the maximum waiting time and
the default is 30,000ms (30 seconds)

verifySSL is enabled by default for the client mode

http

59

setSSL may not be available, case the system doesn't have OpenSSL

Usage Notes

Client mode

In the HttpResponse.body, you may need to explicitly parse a JSON response to Scope using the fromJSON method.
To post a native type as JSON, you can encode it using the toJSON method; however, this is not strictly necessary, as it will be
done implicitly. Both methods are available in the fat.recode library.

If headers are not set, the default Content-Type header for Chunk will be application/octet-stream, for Text
will be text/plain; charset=UTF-8 and for other types, it will be application/json; charset=UTF-8 (due
to implicit conversion).

You can set custom request headers like so:

http <- fat.http

url = ...
token = ...
body = ...

http.setHeaders([
 "Accept: application/json; charset=UTF-8"
 "Content-Type: application/json; charset=UTF-8"
 "Authorization: Bearer " + token # custom header
])

http.post(url, body)

setting headers will completely replace previous list with new list

When performing async requests, you may need to call setHeaders, setName, and configure verifySSL within each
Worker, as these settings are local to each thread.

Server mode

Handling HTTP Responses

The FatScript server automatically handles common HTTP status codes such as 200, 400, 404, 405, 500, and 501. Being 200
the default when constructing an HttpResponse object.

In addition to the common status codes, you can also explicitly return other status codes, such as 201, 202, 203, 204, 205, 301,
401, and 403, by specifying the status code in the HttpResponse object, for example: HttpResponse(status =
401). In all cases, where applicable, the server provides default plain text bodies. However, you have the option to override
these defaults and provide your own custom response bodies when necessary.

By automatically handling these status codes and providing default response bodies, the FatScript server simplifies the
development process while still allowing you to have control over the response content when needed.

if the status code doesn't belong to any of the above, the server will return a 500 code

See an example of a simple file HTTP server:

_ <- fat.type.Text
file <- fat.file
http <- fat.http
{ Route, HttpRequest, HttpResponse } = http

adapt to content location
basePath = '/home/user/contentFolder'

restrict to some extensions only
getContentType = (path: Text): Text -> {
 ext2 = path(-3..).toLower
 ext3 = path(-4..).toLower
 ext4 = path(-5..).toLower

http

60

 ext4 == '.html' => 'Content-Type: text/html'
 ext3 == '.htm' => 'Content-Type: text/html'
 ext2 == '.js' => 'Content-Type: application/javascript'
 ext4 == '.json' => 'Content-Type: application/json'
 ext3 == '.css' => 'Content-Type: text/css'
 ext2 == '.md' => 'Content-Type: text/markdown'
 ext3 == '.xml' => 'Content-Type: application/xml'
 ext3 == '.csv' => 'Content-Type: text/csv'
 ext3 == '.txt' => 'Content-Type: text/plain'
 ext4 == '.svg' => 'Content-Type: image/svg+xml'
 ext3 == '.rss' => 'Content-Type: application/rss+xml'
 ext4 == '.atom' => 'Content-Type: application/atom+xml'
 ext3 == '.png' => 'Content-Type: image/png'
 ext3 == '.jpg' => 'Content-Type: image/jpeg'
 ext4 == '.jpeg' => 'Content-Type: image/jpeg'
 ext3 == '.gif' => 'Content-Type: image/gif'
 ext3 == '.ico' => 'Content-Type: image/icon'
}

routes: List/Route = [
 Route(
 '*'
 get = (request: HttpRequest): HttpResponse -> {
 path = basePath + request.path
 type = getContentType(path)

 !type => HttpResponse(status = 403) # forbidden
 file.exists(path) => HttpResponse(body = file.readBin(path), headers = [type
])
 _ => HttpResponse(status = 404) # not found
 }
)
]

http.listen(8080, routes)

in a real application, request.path must be sanitized before being used to access files on the server; here, it is used
directly only as an example

math

61

math
Mathematical operations and functions

Import

_ <- fat.math

Constants

e, natural logarithm constant 2.71...
maxInt, 9007199254740992
minInt, -9007199254740992
pi, ratio of circle to its diameter 3.14...

read more about number precision in FatScript

Basic functions

Name Signature Brief
abs (x: Number): Number Return absolute value of x
ceil (x: Number): Number Return smallest integer >= x
floor (x: Number): Number Return largest integer <= x
isInf (x: Number): Boolean Return true if x is infinity
isNaN (x: Any): Boolean Return true if x is not a number
logN (x: Number, base: Number = e): Number Return logarithm of x
random (): Number Return pseudo-random, where 0 <= n < 1
sqrt (x: Number): Number Return the square root of x
round (x: Number): Number Return the nearest integer to x

Trigonometric functions

Name Signature Brief
sin (x: Number): Number Return the sine of x
cos (x: Number): Number Return the cosine of x
tan (x: Number): Number Return the tangent of x
asin (x: Number): Number Return the arc sine of x
acos (x: Number): Number Return the arc cosine of x
atan (x: Number, y = 1): Number Return the arc tangent of x, y
radToDeg (r: Number): Number Convert radians to degrees
degToRad (d: Number): Number Convert degrees to radians

Hyperbolic functions

Name Signature Brief
sinh (x: Number): Number Return the hyperbolic sine of x
cosh (x: Number): Number Return the hyperbolic cosine of x
tanh (x: Number): Number Return the hyperbolic tangent of x

Statistical functions

Name Signature Brief
mean (v: List/Number): Number Return the mean of a vector
median (v: List/Number): Number Return the median of a vector

math

62

Name Signature Brief
sigma (v: List/Number): Number Return the standard deviation of a vector
variance (v: List/Number): Number Return the variance of a vector
max (v: List/Number): Number Return maximum value in vector
min (v: List/Number): Number Return the minimum value in vector
sum (v: List/Number): Number Return the sum of vector

Other functions

Name Signature Brief
fact (x: Number): Number Return the factorial of x
exp (x: Number): Number Return e raised to the power of x
sigmoid (x: Number): Number Return the sigmoid of x
relu (x: Number): Number Return the ReLU of x

Example

math <- fat.math # named import
math.abs(-52) # yields 52

See also

Number (syntax)
Number prototype extensions

recode

63

recode
Data conversion between various formats

Import

_ <- fat.recode

type package is automatically imported with this import

Constants

numeric, regex definition used by inferType

Variables

These settings can be adjusted to configure the behavior of the processing functions:

csvSeparator, default is , (comma)
csvReplacement, default is empty (just removes commas from text)
xmlWarnings, default is true - set to false to suppress XML warnings

Base64 functions

Name Signature Brief
toBase64 (data: Chunk): Text Encode binary chunk to base64 text
fromBase64 (b64: Text): Chunk Decode base64 text to original format

JSON functions

Name Signature Brief
toJSON (_: Any): Text Encode JSON from native types
fromJSON (json: Text): Any Decode JSON to native types

URL functions

Name Signature Brief
toURL (text: Text): Text Encode text to URL escaped text
fromURL (url: Text): Text Decode URL escaped text to original format
toFormData (data: Scope): Text Encode URL encoded Form Data from scope
fromFormData (data: Text): Scope Decode URL encoded Form Data to scope

CSV functions

Name Signature Brief
toCSV (header: List/Text, rows: List/Scope): Text Encode CSV from rows
fromCSV (csv: Text): List/Scope Decode CSV into rows

csvReplacement is used by toCSV as replacement in case a csvSeparator is found within a text being encoded

XML functions (rudimentary)

XML attributes and self-closing tags are not supported.

Name Signature Brief
toXML (node: Any): Text Encode XML from native types

recode

64

Name Signature Brief
fromXML (text: Text): Any Decode XML into native types

RLE functions

Name Signature Brief
toRLE (chunk: Chunk): Chunk Compress to RLE schema
fromRLE (chunk: Chunk): Chunk Decompress from RLE schema

Other functions

Name Signature Brief
inferType (val: Text): Any Convert text to boolean/number if applicable
minify (src: Text): Text Minifies JSON and FatScript sources

minify will replace any $break statements (debugger breakpoint) with ()

Usage

JSON

Since FatScript alternatively accepts JSON-like syntax, fromJSON actually uses FatScript internal parser, which is blazing
fast, but may or not yield exactly what one is expecting from a JSON parser.

For example, once the bellow fragment is parsed, since null in FatScript is absence of value, there would be no entry
declarations for "prop":

"prop": null

Therefore, reading with fromJSON and writing back with toJSON is not necessarily an idempotent operation.

XML

Building XML from native types:

data = {
 bookstore: [
 { book: { title: 'Book 1', author: 'Author 1' } }
]
}

xmlString = recode.toXML(data)
xmlString will be the xml representation of the data

toXML generates xml string from FatScript data structures

Parsing XML back into native types:

xmlData =
 '<bookstore><book><title>Book 1</title><author>Author 1</author></book>
</bookstore>'

parsedData = recode.fromXML(xmlData)
parsedData will be a Scope containing the parsed xml data

lists are automatically inferred when multiple sibling items are present, which might lead to inconsistent data structures in
cases where an element is expected to be a list but occasionally contains only a single item, or even none

See also

Type package
SDK library

sdk

65

sdk
Fry's software development kit utilities

a special library that exposes some of the inner elements of fry interpreter

Import

_ <- fat.sdk

Methods

Name Signature Brief
ast (_): Void Print abstract syntax tree of node
stringify (_): Text Converts node to json text
eval (_): Any Interprets text as FatScript program
getVersion (): Text Return fry version
printStack (depth: Number): Void Print execution context stack trace
readLib (ref: Text): Text Return fry library source code
typeOf (_): Text Return type name of node
getTypes (): List Return info about declared types
getDef (name: Text): Any Return type definition by name
getMeta (): Scope Return interpreter's metadata
setKey (key: Text): Void Set key for obfuscated bundles
setMem (n: Number): Void Set memory limit (node count)
runGC (): Number Run GC, return elapsed in milliseconds
quickGC (): Number Run single GC iteration and return ms
setAutoGC (n: Number): Void Set GC to run every n new nodes

Usage notes

readLib

_ <- fat.sdk
_ <- fat.console

print(readLib('fat.extra.Date')) # prints the Date library implementation

readLib cannot see external files, but read from file lib can

setKey

Use preferably on .fryrc file like so:

_ <- fat.sdk
setKey('secret') # will encode and decode bundles with this key

See more about obfuscating.

setMem

Use preferably on .fry file like so:

_ <- fat.sdk
setMem(5000) # ~2mb

Choosing between full, quick and auto GC

sdk

66

Most simple scripts in FatScript won't need to worry about memory management, as the default settings are designed to provide
developers with a reasonably large memory capacity and sensible automatic behavior right out of the box.

The quickGC method offers swift, less exhaustive cleanup, making it suitable for scenarios where some leeway in memory
allocation is acceptable. On the other hand, runGC ensures deterministic and thorough garbage collection, albeit at the expense
of longer execution times, depending on various factors such as the size and complexity of the memory graph. However, in
certain scenarios, quickGC may lead to a buildup of unreclaimed memory and might not be the most effective option.

In addition to manually choosing between quickGC and runGC, there is also a heuristic-based automatic GC. It is disabled by
default, but can be enabled by calling setAutoGC with a non-zero value, this heuristic applies quickGC when ample free
memory is available, ensuring minimal disruption. In contrast, under high memory pressure, fullGC is executed for
comprehensive cleanup. This strategy balances memory efficiency with application performance, dynamically adapting to the
memory usage pattern.

See more about memory management.

system

67

system
System-level operations and information

Import

_ <- fat.system

Types

Name Signature Brief
CommandResult (code: ExitCode, out: Text) Return type of capture

Constants

successCode, 0: ExitCode
failureCode, 1: ExitCode

Methods

Name Signature Brief
args (): List/Text Return list of args passed from shell
exit (code: Number): * Exit program with provided exit code
getEnv (var: Text): Text Get env variable value by name
shell (cmd: Text): ExitCode Execute cmd in shell, return exit code
capture (cmd: Text): CommandResult Capture the output of cmd execution
fork (args: List/Text, out: Text = ø) Start background process, return PID
kill (pid: Number): Void Send SIGTERM to process by PID
getLocale (): Text Get current locale setting
setLocale (cmd: Text): Number Set current locale setting
getMacId (): Text Get machine identifier (MAC address)
blockSig (enabled: Boolean): Void Block SIGINT, SIGHUP and SIGTERM

Usage Notes

Heads Up!

It is important to exercise caution and responsibility when using the getEnv, shell, capture, fork and kill methods.
The system library provides the capability to execute commands directly from the operating system, which can introduce
security risks if not used carefully.

To mitigate potential vulnerabilities, avoid using user input directly in constructing commands passed to these methods. User
input should be validated to prevent command injection attacks and other security breaches.

get/set locale

The fry interpreter will attempt to initialize LC_ALL locale to C.UTF-8 and if that locale is not available on the system tries
to use en_US.UTF-8, otherwise, the default locale will be used.

See more about locale names.

locale configuration applies only to application, and is not persisted after fry exits

https://www.gnu.org/software/libc/manual/html_node/Locale-Names.html

time

68

time
Time and date manipulation

Import

_ <- fat.time

number type is automatically imported with this import

Methods

Name Signature Brief
setZone (offset: Number): Void Set timezone in milliseconds
getZone (): Number Get current timezone offset
now (): Epoch Get current UTC in Epoch
format (date: Text, fmt: Text = ø): Epoch Convert Epoch to date format
parse (date: Text, fmt: Text = ø): Epoch Parse date to Epoch
wait (ms: Number): Void Wait for milliseconds (sleep)
getElapsed (since: Epoch): Text Return elapsed time as text

Usage Notes

Epoch

In FatScript time is represented as an arithmetic type so that you can do maths.

You can get the elapsed time between time1 and time2 like:

elapsed = time2 - time1

You can also check if time2 happens after time1, simply like:

time2 > time1

format

Formats text date as "%Y-%m-%d %H:%M:%S.milliseconds" (default), when fmt is omitted.

milliseconds can only be transformed in default format, otherwise the precision is up to seconds

fmt parameter

The format specification is a text containing a special character sequence called conversion specifications, each of which is
introduced by a '%' character and terminated by some other character known as a conversion specifier. All other characters are
treated as ordinary text.

Specifier Meaning
%a Abbreviated weekday name
%A Full weekday name
%b Abbreviated month name
%B Full month name
%c Date/Time in the format of the locale
%C Century number [00-99], the year divided by 100 and truncated to an integer
%d Day of the month [01-31]
%D Date Format, same as %m/%d/%y
%e Same as %d, except single digit is preceded by a space [1-31]
%g 2 digit year portion of ISO week date [00,99]

time

69

Specifier Meaning
%F ISO Date Format, same as %Y-%m-%d
%G 4 digit year portion of ISO week date
%h Same as %b
%H Hour in 24-hour format [00-23]
%I Hour in 12-hour format [01-12]
%j Day of the year [001-366]
%m Month [01-12]
%M Minute [00-59]
%n Newline character
%p AM or PM string
%r Time in AM/PM format of the locale
%R 24-hour time format without seconds, same as %H:%M
%S Second [00-61], the range for seconds allows for a leap second and a double leap second
%t Tab character
%T 24-hour time format with seconds, same as %H:%M:%S
%u Weekday [1,7], Monday is 1 and Sunday is 7
%U Week number of the year [00-53], Sunday is the first day of the week

%V
ISO week number of the year [01-53]. Monday is the first day of the week. If the week containing January 1st has
four or more days in the new year then it is considered week 1. Otherwise, it is the last week of the previous year,
and the next year is week 1 of the new year.

%w Weekday [0,6], Sunday is 0
%W Week number of the year [00-53], Monday is the first day of the week
%x Date in the format of the locale
%X Time in the format of the locale
%y 2 digit year [00,99]
%Y 4-digit year (can be negative)
%z UTC offset string with format +HHMM or -HHMM
%Z Time zone name
%% % character

Under the hood format uses C's strftime and parse uses C's strptime, but the above format specification table applies pretty
much both ways.

https://man7.org/linux/man-pages/man3/strftime.3.html
https://man7.org/linux/man-pages/man3/strptime.3.html

type._

70

type._
Prototype extensions for native types:

Void
Boolean
Number
HugeInt
Text
Method
List
Scope
Error
Chunk

FatScript does not load these definitions automatically into global scope, therefore you have to explicitly import those
where needed

Importing

If you want to make all of them available at once you can simply write:

_ <- fat.type._

...or import one-by-one, as needed, e.g.:

_ <- fat.type.List

Common trait

All types on this package support the following prototype methods:

apply (constructor)
isEmpty
nonEmpty
size
toText

See also

Types (syntax)

Void

71

Void
Void prototype extensions

Import

_ <- fat.type.Void

Constructor

Name Signature Brief
Void (val: Any) Return null, just ignore argument

Prototype members

Name Signature Brief
isEmpty (): Boolean Return true, always
nonEmpty (): Boolean Return false, always
size (): Number Return 0, always
toText (): Text Return 'null' as text

Example

_ <- fat.type.Void
x.isEmpty # true, since x has not been declared

See also

Void (syntax)
Type package

Boolean

72

Boolean
Boolean prototype extensions

Import

_ <- fat.type.Boolean

Constructor

Name Signature Brief
Boolean (val: Any) Coerces value to boolean

Prototype members

Name Signature Brief
isEmpty (): Boolean Return true if false
nonEmpty (): Boolean Return false if true
size (): Number Return 1 if true, 0 if false
toText (): Text Return 'true' or 'false' as text

Examples

_ <- fat.type.Boolean

x = true
x.isEmpty # false, since x is true

Boolean('false') # yields true, because text is non-empty
Boolean('') # yields false, because text is empty

note that the constructor does not attempt to convert value from text, which is consistent with flow control evaluations,
and you can use a simple case if you need to make conversion from text to boolean

See also

Boolean (syntax)
Type package

Number

73

Number
Number prototype extensions

Import

_ <- fat.type.Number

Aliases

Epoch: unix epoch time in milliseconds
ExitCode: exit status or return code
Millis: duration in milliseconds

Constructor

Name Signature Brief
Number (val: Any) Text to number or collection size

performs the conversion from text to number assuming decimal base

Prototype members

Name Signature Brief
isEmpty (): Boolean Return true if zero
nonEmpty (): Boolean Return true if non-zero
size (): Number Return absolute value, same as math.abs
toText (): Text Return number as text
format (fmt: Text): Text Return number as formatted text
truncate (): Number Return number discarding decimals

Example

_ <- fat.type.Number
x = Number('52') # number: 52
x.toText # text: '52'
x.format('.2') # text: '52.00'

format

The format method is used to convert numbers into strings in various ways. The basic structure of a format specifier is %
[flags][width][.precision][type]. Here's what each of these components mean:

flags are optional characters that control specific formatting behavior. For example, 0 can be used for zero-padding
and - for left-justification.

width is an integer that specifies the minimum number of characters to be printed. If the value to be printed is shorter
than this number, the result is padded with blank spaces or zeros, depending on the flag used.

precision is an optional number following a . that specifies the number of digits to be printed after the decimal
point.

type is a character that specifies how the number should be represented. The common types are f (fixed-point
notation), e (exponential notation), g (either fixed or exponential depending on the magnitude of the number), and a
(hexadecimal floating-point notation).

Examples:

%5.f: This will print the number with a total width of 5 characters, with no digits after the decimal point (because the
precision is f, which means fixed-point, but no number follows the dot). It will be right-justified because no - flag is

Number

74

used.

%05.f: Similar to the above, but because the 0 flag is used, the empty spaces will be filled with zeros.

%8.2f: This will print the number with a total width of 8 characters, with 2 digits after the decimal point.

%-8.2f: Similar to the above, but the number will be left-justified because of the - flag.

%.2e: This will print the number using exponential notation, with 2 digits after the decimal point.

%.2a: This will print the number using hexadecimal floating-point notation, with 2 digits after the hexadecimal point.

%.2g: This will print the number in either fixed-point or exponential notation, depending on its magnitude, with a
maximum of 2 significant digits.

if the % symbol is not present, fmt is automatically evaluated as %<fmt>f

See also

Number (syntax)
Math library
Type package

HugeInt

75

HugeInt
HugeInt prototype extensions

Import

_ <- fat.type.HugeInt

Constructor

Name Signature Brief
HugeInt (val: Any) Number or text parsing to HugInt

performs the conversion from text to number assuming hexadecimal representation

Prototype members

Name Signature Brief
isEmpty (): Boolean Return true if zero
nonEmpty (): Boolean Return true if non-zero
size (): Number Return number of bits needed to represent
toText (): Text Return number as hexadecimal text
modExp (exp: HugeInt, mod: HugeInt): HugeInt Return modular exponentiation
toNumber (): Number Converts to number (with precision loss)

Usage notes

When converting from Number type to HugeInt, the limit is 2^53, which is the maximum value that can be safely
represented as an integer without precision loss. Attempting to pass a value higher than this limit will raise a ValueError.

Conversely, when converting from HugeInt to Number, values up to 2^1023 - 1 can be converted with some degree of
precision loss. Attempting to convert a value higher than this will result in infinity, which can be checked using the isInf
method provided by the math library.

the math library also provides the maxInt value, which serves to assess potential precision loss; if a number is less than
maxInt, its conversion from HugeInt is considered safe without precision loss

See also

HugeInt (syntax)
Type package

Text

76

Text
Text prototype extensions

Import

_ <- fat.type.Text

Constructor

Name Signature Brief
Text (val: Any) Coerces value to text, same as .toText

Prototype members

Name Signature Brief
isEmpty (): Boolean Return true if length is zero
nonEmpty (): Boolean Return true if non-zero length
size (): Number Return text length
toText (): Text Force text interpolation
replace (old: Text, new: Text): Text Replace old with new (all)
indexOf (frag: Text): Number Get fragment index, -1 if absent
contains (frag: Text): Boolean Check if text contains fragment
count (frag: Text): Number Get repetition count for fragment
startsWith (frag: Text): Boolean Check if starts with fragment
endsWith (frag: Text): Boolean Check if ends with fragment
split (sep: Text): List/Text Split text by sep into list
toLower (): Text Return lowercase version of text
toUpper (): Text Return uppercase version of text
trim (): Text Return trimmed version of text
match (regex: Text): Boolean Return text is match for regex
repeat (n: Number): Text Return text repeated n times
overlay (base: Text, align: Text): Text Return text overlaid on base

Example

_ <- fat.type.Text
x = 'banana'
x.size # yields 6
x.replace('nana', 'nquet'); # yields 'banquet'

Regex

When defining regular expressions, prefer to use raw texts and remember to escape backslashes as needed, ensuring that the
regular expressions are interpreted correctly.

At the moment, regex support is limited to matching only:

alphaOnly = "^[[:alpha:]]+$"
'abc'.match(alphaOnly) # output: true

the implemented dialect is POSIX regex extended

Overlay

The default align value (if not provided) is 'left'. Other possible values are 'center' and 'right':

https://en.wikibooks.org/wiki/Regular_Expressions/POSIX-Extended_Regular_Expressions

Text

77

'x'.overlay('___') # 'x__'
'x'.overlay('___', 'left') # 'x__'
'x'.overlay('___', 'center') # '_x_'
'x'.overlay('___', 'right') # '__x'

the outcome is always the same size as base parameter, the text will be cut if it is longer

See also

Text (syntax)
Type package

Method

78

Method
Method prototype extensions

Import

_ <- fat.type.Method

Constructor

Name Signature Brief
Method (val: Any) Wrap val in a method

Prototype members

Name Signature Brief
isEmpty (): Boolean Return false, always
nonEmpty (): Boolean Return true, always
size (): Number Return 1, always
toText (): Text Return 'Method' text literal
arity (): Number Return method arity

Example

_ <- fat.type.Method
x = (): Number -> 3
(~ x).toText # yields 'Method'

note that it is necessary to explicitly opt out of using automatic calls to make use of the prototype members

See also

Method (syntax)
Type package

List

79

List
List prototype extensions

Import

_ <- fat.type.List

Constructor

Name Signature Brief
List (val: Any) Wrap val into a list

Prototype members

Name Signature Brief
isEmpty (): Boolean Returns true if length is zero
nonEmpty (): Boolean Returns true if length is non-zero
size (): Number Returns list length
toText (): Text Returns 'List' as text literal
join (sep: Text): Text Joins list with separator into text
flatten (): List Flattens list of lists into one list
find (p: Method): Any Returns first matching item or null
contains (p: Method): Boolean Checks if list contains match for predicate
filter (p: Method): List Returns sub-list matching predicate
reverse (): List Returns a reversed copy of the list
shuffle (): List Returns a shuffled copy of the list
unique (): List Returns a list of unique items
sort (): List Returns a sorted copy of the list
sortBy (key: Any): List Returns a sorted copy of the list *
indexOf (item: Any): Number Returns item index, -1 if absent
head (): Any Returns first item, null if empty
tail (): List Returns all items, but the first
map (m: Method): List Functional utility (allows chaining)
reduce (m: Method, acc: Any): Any Functional utility
walk (m: Method): Void Apply side-effects to each item
headOption (): Option Returns first item, as Option
itemOption (index: Number): Option Get item by index, as Option
findOption (p: Method): Option Search item by predicate, as Option

Example

_ <- fat.type.List
x = ['a', 'b', 'c']
x.size # yields 3

Sorting

The sort and sortBy methods implement the quicksort algorithm, enhanced with random pivot selection. This approach is
known for its efficiency, offering an average-case time complexity of O(n log n). It demonstrates high performance across most
datasets. For datasets containing duplicate values or keys, stable sorting cannot be guaranteed, and performance may degrade to
O(n^2) in the worst case, where all elements are identical or have the same key.

sortBy accepts a textual parameter for key if it is a list of Scope, or a numerical parameter if it is a list of List
(matrix), representing the index

List

80

Reducing

The reduce method in FatScript transforms a list into a single value by applying a reducer (m: Method) to each element in
sequence, starting from an initial accumulator value (acc: Any), or from the first element if no value is provided. This
method is useful for operations that involve aggregating data from a list.

Characteristics

Reducer Method: The reducer should take the current accumulator value and the current list item, returning the
updated accumulator value.

Empty List Behavior: When reduce is applied to an empty list without an initial accumulator value, it returns
null.

Practical Example

_ <- fat.type.List
sumReducer = (acc: Number, item: Number) -> acc + item
sum = [1, 2, 3].reduce(sumReducer) # yields 6

for complex data transformations or when dealing with lists of scopes, carefully structure the reducer to handle the specific
data types and desired output

See Also

List (syntax)
Option type
Type package

Scope

81

Scope
Scope prototype extensions

Import

_ <- fat.type.Scope

Constructor

Name Signature Brief
Scope (val: Any) Wrap val into a scope

Prototype members

Name Signature Brief
isEmpty (): Boolean Return true if size is zero
nonEmpty (): Boolean Return true if non-zero size
size (): Number Return number of entries
toText (): Text Return 'Scope' text literal
copy (): Scope Return deep copy of scope
keys (): List Return list of scope keys
maybe (key: Text): Option Return Option wrapped value

Example

_ <- fat.type.Scope
x = { num = 12, prop = 'other' }
x.size # yields 2

See also

Scope (syntax)
Option type
Type package

Error

82

Error
Error prototype extensions

Import

_ <- fat.type.Error

Aliases

AssignError: assigning a new value to an immutable entry
AsyncError: asynchronous operation failure
CallError: a call is made with insufficient arguments
FileError: file operation failure
IndexError: index is out of list/text bounds
KeyError: the key (name) is not found in scope
SyntaxError: syntax or code structure error
TypeError: type mismatch on method call, return, or assign
ValueError: type may be okay, but content is not accepted

Constructor

Name Signature Brief
Error (val: Any) Return val coerced to text wrapped in error

Prototype members

Name Signature Brief
isEmpty (): Boolean Return true, always
nonEmpty (): Boolean Return false, always
size (): Number Return 0, always
toText (): Text Return error text val

Example

_ <- fat.type.Error
x = Error('ops')
x.toText # yields "Error: ops"

...or something unexpected
e = undeclared.item # raises Error
e.toText # yields "can't resolve scope of 'item'"

See also

Failure library
Error (syntax)
Type package

Chunk

83

Chunk
Chunk prototype extensions

Import

_ <- fat.type.Chunk

Constructor

Name Signature Brief
Chunk (val: Any) Coerces value to chunk (binary)

Prototype members

Name Signature Brief
isEmpty (): Boolean Returns true if size is zero
nonEmpty (): Boolean Returns true if non-zero size
size (): Number Returns chunk size (in bytes)
toText (): Text Converts chunk to text format
toBytes (): List/Number Converts chunk to bytes list
seekByte (byte: Number, offset: Number = 0): Number Returns index of first match

toText replaces any invalid UTF-8 sequences with U+FFFD, represented as � in UTF-8

Example

_ <- fat.type.Chunk

x = Chunk('example')

x.size # yields 7
x.toText # yields 'example'
x.toBytes # yields [101, 120, 97, 109, 112, 108, 101]

See also

Chunk (syntax)
Type package

extra._

84

extra._
Additional types implemented in vanilla FatScript:

Date - Calendar and date handling
Duration - Millisecond duration builder
HashMap - Quick key-value store
Logger - Logging support
Memo - Generic memoization utility
Option - Encapsulation of optional value
Sound - Sound playback interface
Storable - Data store facilities

Importing

If you want to make all of them available at once you can simply write:

_ <- fat.extra._

...or import one-by-one, as needed, e.g.:

_ <- fat.Date

Developer note

Currently most of these utilities are not resource or performance optimized.

The intent here was more of providing simple features, as basic templates that can be pulled out via readLib, so any developer
with particular requirements will have a starting point for their own implementations.

Date

85

Date
Calendar and date handling

operations like addition and subtraction of days, months, and years, ensuring accurate handling of various date-related
complexities such as leap years and month-end calculations

Import

_ <- fat.extra.Date

time library, math library, Error type, Text type, List type, Number type, Duration type are automatically imported with
this import

Date Type

Date offers a comprehensive solution for managing dates, including leap years and time of day.

Properties

year: Number - Year of the date
month: Number - Month of the date
day: Number - Day of the date
tms: Millis - Time of the day in milliseconds

default value points to: 1 of January of 1970

Prototype Members

Name Signature Brief
fromEpoch (ems: Epoch): Date Creates a Date instance from an epoch time
isLeapYear (year: Number): Boolean Determines if a year is a leap year
normalizeMonth (month: Number): Number Normalizes the month number
daysInMonth (year: Number, month: Number): Number Returns number of days in month of year
isValid (year, month, day, tms): Boolean Validates the date components
truncate (): Date Truncates the time of day
toEpoch (): Epoch Converts the Date instance to epoch time
addYears (yearsToAdd: Number): Date Adds years to the date
addMonths (monthsToAdd: Number): Date Adds months to the date
addWeeks (weeksToAdd: Number): Date Adds weeks to the date
addDays (daysToAdd: Number): Date Adds days to the date

Usage Examples

_ <- fat.extra.Date

Create a Date instance
myDate = Date(2023, 1, 1)

Add one year to the date
newDate = myDate.addYears(1)

Add two weeks to a date
datePlusTwoWeeks = myDate.addWeeks(2)

Create a Date from epoch time (in milliseconds)
result is influenced by current timezone, see: time.setZone
epochTime = 1672531200000
dateFromEpoch = Date.fromEpoch(Epoch(epochTime))

Date

86

Convert a date to epoch time
epochFromDate = myDate.toEpoch

Duration

87

Duration
Millisecond duration builder

In FatScript time is natively expressed in milliseconds, and this type provides a simple way to express different time
magnitudes effortlessly into Millis.

Import

_ <- fat.extra.Duration

Constructor

Name Signature Brief
Duration (val: Number) Create a Millis duration converter

Prototype members

Name Signature Brief
nanos (): Millis Interpret value as nanoseconds
micros (): Millis Interpret value as microseconds
millis (): Millis Interpret value as milliseconds
seconds (): Millis Interpret value as seconds
minutes (): Millis Interpret value as minutes
days (): Millis Interpret value as days
weeks (): Millis Interpret value as weeks
months (): Millis Interpret value as months (aprox.)
years (): Millis Interpret value as years (aprox.)

Example

_ <- fat.extra.Duration
time <- fat.time

fiveSeconds = Duration(5).seconds
time.wait(fiveSeconds) # sleeps thread for 5 seconds

HashMap

88

HashMap
An optimized in-memory key-value store, serving as a better performance replacement for default Scope implementation,
designed for handling large data sets efficiently.

the speed gains will come at the expense of more memory usage

Import

_ <- fat.extra.HashMap

Constructor

Name Signature Brief
HashMap (capacity: Number = 97) Create a HashMap with a specified capacity

the default capacity of 97 is generally efficient for up to 10,000 items

Capacity Optimization

Ideally, you should keep at most about 100 items per 'bucket' in the hash table. In this context, 'capacity' refers to the number of
buckets available for your data. Note that this implementation does not automatically adjust its size, so proper initial sizing is
crucial. The following table can help determine the optimal capacity for storing n items:

n < 5000 => 53
n < 10000 => 97
n < 20000 => 193
n < 40000 => 389
n < 80000 => 769
n < 160000 => 1543
_ => 3079

using prime numbers can help reduce collisions

These values are based on empirical tests and should be adjusted according to your specific data needs and performance goals.
Keep in mind that the relationship between capacity and performance is not entirely linear; as the number of items increases,
the benefits of further increasing the capacity diminish.

Recommendation

Although the standard FatScript Scope exhibits slower performance for insertions and is particularly slow for deletions (such as
setting to null), it excel in data retrieval and updates, outperforming HashMap for small collections (under ~500 items).
Therefore, the benefits of using HashMap are most noticeable in scenarios involving frequent inserts and deletions on large
data sets.

Prototype members

Name Signature Brief
isEmpty (): Boolean Returns true if length is zero
nonEmpty (): Boolean Returns true if length is non-zero
size (): Number Returns hash table length
toText (): Text Returns 'HashMap/capacity' as text literal
set (key: Text, value: Any): Any Set a key-value pair in the HashMap
get (key: Text): Any Get the value associated with a key
keys (): List/Text Return a list of all keys in the HashMap

Example

_ <- fat.extra.HashMap

hmap = HashMap()

HashMap

89

hmap.set('key1', 'value1')

hmap.get('key1') # yields 'value1'
hmap.keys # yields ['key1']

Logger

90

Logger
Logging support

from simple console logging to file-based logging

Import

_ <- fat.extra.Logger

console library, color library, file library, time library, sdk library, and type library are automatically imported with this
import

Logger Type

Logger provides customizable logging capabilities with various levels and formats.

Properties

level: Text (default 'debug') - Logging level
showTime: Boolean (default true) - Flag to display timestamps

valid levels: 'debug', 'info', 'warn', 'error'

Prototype members

Name Signature Brief
setLevel (level: Text) Sets the logging level
setShowTime (showTime: Boolean) Toggles timestamp display in logs
asMessage (level: Text, args: Scope): Text Formats log messages (can be overridden)
log (msg: Any, fg: Number) Outputs messages (can be overridden)

Logging methods

debug(_1, _2, _3, _4, _5): Logs a debug message
info(_1, _2, _3, _4, _5): Logs an info message
warn(_1, _2, _3, _4, _5): Logs a warning message
error(_1, _2, _3, _4, _5): Logs an error message

Subtypes

BoringLogger

Inherits from Logger
Overrides log to output plain text without color

FileLogger

Inherits from Logger
Additional Properties:

logfile: Text (default 'log.txt') - file for logging
Overrides log to append messages to a file

Usage Example

_ <- fat.extra.Logger

Create an instance with custom settings
myLogger = Logger(level = 'info', showTime = false)

Log an information message

Logger

91

myLogger.info('This is an informational message.')

Create a FileLogger to log messages to a file
fileLogger = FileLogger('myLog.txt')
fileLogger.info('Logged to file.')

Memo

92

Memo
Generic memoization utility (can also create lazy values)

Import

_ <- fat.extra.Memo

Constructor

Name Signature Brief
Memo (method: Method) Create a Memo instance for a method

the arity of the memoized method should be 1 or else 0 (for lazy values)

Prototype members

Name Signature Brief
asMethod (): Method Return a memoized version of original method
call (arg: Any): Any Memoized call; cache and return results

Example

Memo is useful for optimizing functions by caching results. It stores the outcome of function calls and returns the cached result
when the same inputs occur again.

_ <- fat.extra.Memo

fib = (n: Number) -> {
 n <= 2 => 1
 _ => quickFib(n - 1) + quickFib(n - 2)
}

quickFib = Memo(fib).asMethod

quickFib(50) # 12586269025

You can now call quickFib as if you were calling fib, but with cached results for previously computed inputs.

caveat: may cause memory allocation build-up

Option

93

Option
Encapsulation of optional value

Import

_ <- fat.extra.Option

Error type is automatically imported along with this import

Types

This library introduces two main constructs: Some and None, which are special cases of the Option type, providing a way to
represent optional values, encapsulating the presence (Some) or absence (None) of a value.

Prototype members

Name Signature Brief
isEmpty (): Boolean Checks if the option is None
nonEmpty (): Boolean Checks if the option is Some
get (): Any Returns value or raises NoSuchElement
getOrElse (default: Any): Any Returns value or default if None
map (fn: Method): Option Applies method to contained value
flatMap (fn: Method/Option): Option Applies method that returns Option
filter (predicate: Method): Option Filters value by predicate
toList (): List Converts option to List
concrete (): Option Resolves option to Some or None

Usage Example

_ <- fat.extra.Option

Creating options
x = Some(5) # equivalent to Option(5).concrete
y = None() # equivalent to Option().concrete

Working with options
isEmptyX = x.isEmpty # false
isEmptyY = y.isEmpty # true
valX = x.getOrElse(0) # 5
valY = y.getOrElse(0) # 0

Applying a transformation
transformedX = x.map(v -> v * 2).getOrElse(0) # 10
transformedY = y.map(v -> v * 2).getOrElse(0) # 0

Lifting values to option
label: Text = Option(opVal).concrete >> {
 Some => 'some value' # case where opVal is not null
 None => 'no value' # case where opVal is null
}

Option in Functional Programming

In FatScript, null is integrated as a first-class citizen, enabling native types, in most cases, to handle absent values without
necessitating additional constructs for safety. Consequently, the Option type is included in the extra package as a syntactic
sugar.

It allows explicit encapsulation of optional values for semantic clarity or adherence to certain functional programming
paradigms. An example of its utility is demonstrated in the Scope type, which includes a maybe method alongside the

Option

94

standard value retrieval syntax:

myScope('key') returns the value associated with key or null if the key does not exist.
myScope.maybe('key') provides an Option wrapped value, distinguishing explicitly between the existence
(Some) and absence (None) of a value.

Semantic handling of missing values

One of the key benefits of using the Option type is its ability to handle operations with potentially missing values
semantically and safely. This feature is particularly useful in primitive operations or data transformations where null values
might otherwise lead to errors. For example, consider a scenario where you need to sum a number with a value that may not be
present:

Assuming eggsBought is defined and has a value
eggsBought: Number = ...

fridge.maybe('egg') retrieves the number of eggs in the fridge as an Option
If 'egg' is not present, it defaults to 0, avoiding null-related errors
totalEggs: Number = fridge.maybe('egg').getOrElse(0) + eggsBought

Performance considerations

The use of Option types introduces computational overhead due to function calls needed to manipulate values and additional
memory stemming from their underlying structure. While the benefits of safety and expressiveness are significant, the
performance cost could become noticeable in tight loops or when processing large datasets.

See also

Scope type
Error type

Sound

95

Sound
Sound playback interface

Wrapper for command-line audio players using fork and kill.

Import

_ <- fat.extra.Sound

Constructor

The Sound constructor takes three arguments:

path: the filepath of your audio file.
duration (optional): the cool off time (in milliseconds) to accept to play again the file, usually you want to set this to
the exact duration of your audio.
player (optional): the default player used is aplay (common Linux audio utility, only supports wav files), but you
could use ffplay to play mp3, for example, defining ffplay = ['ffplay', '-nodisp', '-
autoexit', '-loglevel', 'quiet'], then providing it as argument for your sound instance. In this case
the package ffmpeg needs to be installed on the system.

Prototype members

Name Signature Brief
play (): Void Start player, if not already playing
stop (): Void Stop player, if still playing

state of "still playing" is inferred from the duration parameter

Example

_ <- fat.extra.Sound
time <- fat.time

applause = Sound('applause.wav', 5000);
applause.play
time.wait(5000)

note that Sound spawns a child process to play the audio, so it is asynchronous

Sound in Web Build

When using fry built with Emscripten (for example, when using FatScript Playground), this prototype uses embedded
commands $soundPlay and $soundStop, which are only defined in the web build. Therefore, instead of utilizing a CLI
audio player through process forking, there is audio support via SDL2/WebAudio.

See also

Extra package

Storable

96

Storable
Data store facilities

Import

_ <- fat.Storable

file library, sdk library, enigma library, Error type, Text type, Void type and Method type are automatically imported with
this import

Mixins

This library introduces two mixin types: Storable and EncryptedStorable

Storable

The Storable mixin provides methods for storing and retrieving objects in the filesystem using JSON serialization.

Prototype members

Name Signature Brief
list (): List/Text Gets list of ids for stored instances
load (id: Text): Any Loads an object from the filesystem
save (): Boolean Saves the current object instance
erase (): Boolean Deletes the file associated with the id

the load and save methods throw FileError on failure

EncryptedStorable

Extends Storable with encryption capabilities for safer data storage. Requires an implementation of getEncryptionKey
method.

Usage example

_ <- fat.Storable

Define a type that includes Storable (or EncryptedStorable)
User = (
 Storable # Include the Storable mixin

 # EncryptedStorable # alternative implementation
 # getEncryptionKey = (): Text -> '3ncryp1ptM3' # could get via KMS or config

 ## Argument slots
 name: Text
 email: Text

 # Setters return new immutable instance copy with updated field
 setName = (name: Text) -> self + User * { name }
 setEmail = (email: Text) -> self + User * { email }
)

Create a new user instance
newUser = User('Jane Doe', 'jane.doe@example.com')

Save the new user
newUser.save

Update a user's information and save the changes
updatedUser = newUser

Storable

97

 .setName('Jane Smith')
 .setEmail('jane.smith@example.com')
updatedUser.save

List all saved users
userIds = User.list

Load a user from the filesystem
userId = userIds(0) # ...or newUser.id
loadedUser = User.load(userId)

Delete user's data from the filesystem
loadedUser.erase # ...or User.erase(userId)

Storable in Web Build

When using fry built with Emscripten (for example, when using FatScript Playground), this prototype uses embedded
commands $storableSet, $storableGet, $storableList, and $storableRemove, which are only defined in the
web build. Therefore, instead of using the conventional file system for storage, there is special support for using the browser's
localStorage object.

See also

Extra package

Embedded commands

98

Embedded commands
Embedded commands are FatScript's low-level functions that can be invoked with keywords preceded by a dollar sign $. These
commands are always available, implemented as compiled code, and require no imports.

Unlike methods, they take no explicit arguments, but may read from specific entry names in the current scope, or even from the
interpreter's internal state.

Handy ones

Here a are some embedded commands that could be useful to know:

$break pauses execution and loads the debugging console
$debug toggles interpreter debug logs
$exit exits program with provided code
$keepDotFry keeps the config (.fryrc) in scope after startup
$result toggles result printing at the end of execution
$root provides a reference to global scope
$self provides a self reference to method/instance scope
$bytesUsage returns total of bytes allocated at the moment
$nodesUsage returns total of nodes allocated at the moment
$isMain checks if code is executing as main or module

root and self keywords are automatically lifted into $root and $self

You can call those directly on your code, like:

$exit # terminates the program

in order to use other embedded commands you have to study the C implementation of fry, as the complete list is not
documented, refer to embedded.c file

Libs under the hood

Standard libraries wrap embedded calls into methods, providing a more ergonomic interface. You don't need to create an
execution scope or load arguments into that scope before delegating execution to them.

For example, here's how you can use the floor method from math lib:

_ <- fat.math
floor(2.53)

This method is implemented as:

floor = (x: Number): Number -> $floor

Under the hood, the floor method creates an execution scope and loads an argument as x into it. The method then delegates
execution to the $floor embedded command, which reads the value of x from the current scope and returns the floor of that
number.

You can achieve the same outcome as above method by doing the following:

x = 2.53
$floor # reads value of x from current scope

Hacking

You can see which embedded command a library method is calling by looking into the library's implementation via the
readLib method from the SDK lib. Technically, there is nothing preventing you from calling embedded commands directly.

For example, you could terminate your program by calling $exit directly, which will exit with code 0 (default) or, if a
numeric entry named code exists in the current scope, the value of that entry will be used as the exit code. However, it would
be more elegant to import the fat.system library and call the exit method with the desired exit code:

https://gitlab.com/fatscript/fry/blob/main/src/sdk/embedded.c

Embedded commands

99

sys <- fat.system
sys.exit(0) # exits with code 0

This approach makes your code more readable and less prone to errors, and it also provides a better separation of concerns.

It's important to keep in mind that embedded commands are black boxes and not intended for writing common FatScript code.
In most cases, you would need to read the underlying C implementation to better grasp what a command is actually doing.

While it's possible to use embedded commands to gain additional runtime performance by avoiding imports and method calls,
this is not recommended due to the loss of code readability. In general, it's better to use the standard libraries and follow best
practices for writing clear, maintainable code.

https://gitlab.com/fatscript/fry/tree/main/src/libs

	Introduction
	General overview
	Setup
	Options
	Bundling
	Tooling

	Syntax
	Formatting
	Imports
	Entries
	Types
	Any
	Void
	Boolean
	Number
	HugeInt
	Text
	Method
	List
	Scope
	Error
	Chunk

	Flow control
	Loops

	Libraries
	async
	color
	console
	curses
	enigma
	failure
	file
	http
	math
	recode
	sdk
	system
	time
	type._
	Void
	Boolean
	Number
	HugeInt
	Text
	Method
	List
	Scope
	Error
	Chunk

	extra._
	Date
	Duration
	HashMap
	Logger
	Memo
	Option
	Sound
	Storable

	Embedded commands

