
1

Table of Contents
1. Introduction 1.1
2. General overview 1.2

1. Setup 1.2.1
2. Options 1.2.2
3. Bundling 1.2.3
4. Tooling 1.2.4

3. Syntax 1.3
1. Formatting 1.3.1
2. Imports 1.3.2
3. Entries 1.3.3
4. Types 1.3.4

1. Any 1.3.4.1
2. Void 1.3.4.2
3. Boolean 1.3.4.3
4. Number 1.3.4.4
5. Text 1.3.4.5
6. Method 1.3.4.6
7. List 1.3.4.7
8. Scope 1.3.4.8
9. Error 1.3.4.9

5. Flow control 1.3.5
6. Loops 1.3.6

4. Libraries 1.4
1. async 1.4.1
2. color 1.4.2
3. console 1.4.3
4. curses 1.4.4
5. failure 1.4.5
6. file 1.4.6
7. http 1.4.7
8. math 1.4.8
9. sdk 1.4.9

10. system 1.4.10
11. time 1.4.11
12. zCode 1.4.12
13. type._ 1.4.13

1. Void 1.4.13.1
2. Boolean 1.4.13.2
3. Number 1.4.13.3
4. Text 1.4.13.4
5. Method 1.4.13.5
6. List 1.4.13.6
7. Scope 1.4.13.7
8. Error 1.4.13.8

14. extra._ 1.4.14
1. csv 1.4.14.1
2. Date 1.4.14.2
3. Duration 1.4.14.3
4. elapsed 1.4.14.4
5. HashMap 1.4.14.5
6. hex 1.4.14.6
7. json 1.4.14.7
8. Logger 1.4.14.8
9. mathex 1.4.14.9

10. Memo 1.4.14.10
11. regex 1.4.14.11
12. Sound 1.4.14.12
13. util 1.4.14.13
14. xml 1.4.14.14

15. Embedded commands 1.4.15

Introduction

2

Introduction
FatScript logo

Hello World

_ <- fat.console
log('Hello World')

Quick Start

Jump straight into the docs:

General overview
Language syntax
Standard libraries

Running your code

You can run FatScript using either the fry interpreter or the web playground.

Fry Interpreter

For local execution, use the fry interpreter. For details on its installation and usage, refer to the setup section.

Web Playground (beta)

For quick and convenient testing, run your code directly in the FatScript Playground. The playground features a REPL and an
intuitive interface that allows you to load scripts from a file, facilitating swift experimentation.

Tutorials

Dive into our immersive tutorials, behind-the-scenes insights, and surrounding topics in the FatScript YouTube channel.

Community

Join the FatScript community on Reddit to connect with fellow programers and discuss all about FatScript!

Donations

Did you find FatScript useful and would like to say thanks?

Buy me a coffee

License

GPLv3 © 2022-2023 Antonio Prates

fatscript.org

https://fatscript.org/playground
https://www.youtube.com/@fatscript
https://www.reddit.com/r/fatscript/
https://www.buymeacoffee.com/aprates
clbr://internal.invalid/LICENSE
https://fatscript.org/

General overview

3

General overview

General overview
FatScript is a lightweight, interpreted programming language designed for building console-based applications. It emphasizes
simplicity, ease of use, and functional programming concepts.

Free and open-source

fatscript/fry is an open-source project that encourages knowledge sharing and collaboration. We welcome developers to
contribute to the project and help us improve it over time.

Key Concepts

Automatic memory management through garbage collection (GC)
Symbolic character combinations for a minimalistic syntax
REPL (Read-Eval-Print Loop) for quick expression testing
Support for type system, inheritance, and sub-typing via aliases
Support for immutable programming and passable methods (as values)
Keep it simple and intuitive, whenever possible

Contents of this section

Setup: how to install the FatScript interpreter
Options: how to customize the runtime
Bundling: how to pack a FatScript application
Tooling: overview of a few extra tools and resources

Limitations and challenges

While FatScript is designed to be simple and intuitive, it is still a relatively new language and may not be suitable for all use
cases. For example, it may underperform compared to more mature programming languages when dealing with complex
workloads or high-performance computing tasks.

https://gitlab.com/fatscript/fry/-/blob/main/CONTRIBUTING.md

Setup

4

Setup

Setup
To start "frying" your fat code, you'll need an interpreter for the FatScript programming language.

fry, The FatScript Interpreter

fry is a free interpreter and runtime environment for FatScript. You can install it on your machine using the following
instructions.

Installation

fry is designed for GNU/Linux, but it might also work on other operating systems.

For Arch-based distributions, install via fatscript-fry AUR package.

For other distributions, try the auto-install script:

curl -sSL https://gitlab.com/fatscript/fry/raw/main/get_fry.sh -o get_fry.sh;
bash get_fry.sh || sudo bash get_fry.sh

Or, to install fry manually:

Clone the repository:

git clone --recursive https://gitlab.com/fatscript/fry.git

Then, run the installation script:

cd fry
./install.sh

the manual installation may copy the fry binary to the $HOME/.local/bin folder, alternatively use sudo to install it to
/usr/local/bin/

Verify that fry is installed by running:

fry --version

Dependencies

If the installation fails, you may be missing some dependencies. fry requires git, gcc and libcurl to build. For example,
to install these dependencies on Debian/Ubuntu, run:

apt update
apt install git gcc libcurl4-openssl-dev

OS Support

fry is primarily designed for GNU/Linux, but it's also accessible on other operating systems:

Android

If you're on Android, you can install fry via Termux. Just install the required dependencies like so:

pkg install git clang

Then you can follow the standard installation instructions for fry.

ChromeOS

If you're using ChromeOS, you can enable Linux support by following the instructions here.

https://gitlab.com/fatscript/fry
https://aur.archlinux.org/packages/fatscript-fry
https://termux.dev/
https://chromeos.dev/en/linux/setup

Setup

5

MacOS

If you're using MacOS, you'll need to have Command Line Tools installed.

iOS

If you're using iOS, you may use fry via iSH. First, install the required dependencies:

apk add bash gcc libc-dev curl-dev

Then, according to this thread, configure git to work properly, like so:

wget https://dl-cdn.alpinelinux.org/alpine/v3.11/main/x86/git-2.24.4-r0.apk
apk add ./git-2.24.4-r0.apk
git config --global pack.threads "1"

Windows

If you're using Windows, you can use fry via Windows Subsystem for Linux (WSL).

Docker image

fry is also available as a docker image:

docker run --rm -it fatscript/fry

To execute a FatScript file with docker, use the following command:

docker run --rm -it -v ~/project:/app fatscript/fry prog.fat

replace ~/project with the path to your FatScript file

Troubleshooting

If you encounter any issues or bugs while using fry, please open an issue.

https://developer.apple.com/forums/thread/670389
https://github.com/ish-app/ish/
https://github.com/ish-app/ish/issues/943
https://learn.microsoft.com/en/windows/wsl/install
https://hub.docker.com/r/fatscript/fry/tags
https://gitlab.com/fatscript/fry/-/issues

Options

6

Options

Options
With this breakdown of the available modes and parameters you will find out that fry has got several spices under the hood
for you to better season your runtime.

Command-line arguments

The CLI front-end offers some modes of operation:

fry [OPTIONS] read-eval-print-loop (REPL)
fry [OPTIONS] FILE [ARGS] execute a FatScript file
fry [OPTIONS] -b/-o OUT IN create a bundle
fry [OPTIONS] -f FILE... format FatScript source files

Here are the available option parameters:

-a, --ast print abstract syntax tree only
-b, --bundle save bundle to outfile (implies -p)
-c, --clock enable time and stats log (benchmark)
-d, --debug enable debug logs (implies -c)
-e, --error continue on error (toggle)
-f, --format indent FatScript source files
-h, --help show this help and exit
-i, --interactive start REPL after file execution
-k, --stack # set stack depth (frame count)
-m, --meta show info about this build
-n, --nodes # set memory limit (node count)
-o, --obfuscate encode bundle (implies -b)
-p, --probe perform static analysis (dry run)
-s, --save store REPL session to repl.fat
-v, --version show version number and exit
-w, --warranty show disclaimer and exit

Note that when in the REPL mode or when using --probe, the -e option (continue on error) is toggled on by default.

Memory management

fry manages memory automatically without pre-reservation. You can limit memory usage by specifying the number of nodes
with CLI options:

-n <count> for an exact node count
-n <count>k for kilonodes, count * 1000
-n <count>m for meganodes, count * 1000000

For example, fry -n 5k mySweetProgram.fat restricts the app to 5000 nodes.

The garbage collector (GC) runs automatically when there are 256 nodes left before the final memory limit is reached (GC
premonition). You can also invoke the GC at any time by calling the runGC method of system lib from the main thread.

Using a negative node count deactivates the garbage collector but still sets the memory limit to the absolute value, which can be
useful for debugging purposes.

Bytes estimate (x64)

Each node on a 64-bit platform uses approximately ~200 bytes. The actual node size depends on the data it holds. For example,
the default limit is 10 million nodes, your program can use up to 2 GB of RAM when reaching the default limit.

Use the -c or --clock option to print the execution stats to have a better understanding of how your program is behaving in
practice.

Runtime verification

Options

7

There are two embedded commands for checking memory usage at runtime:

$nodesUsage currently allocated nodes (O(1))
$bytesUsage currently allocated bytes (O(n))

checking the currently allocated bytes is an expensive operations as it needs to traverse all nodes to check the actual size
of each one

Stack size

The maximum stack depth is defined in parameters.h, however you may be able to customize the stack size up to a certain
point using CLI options:

-k <count> for an exact frame count
-k <count>k for kibiframes, count * 1024

Run commands file

On bootstrap, fry looks for a .fryrc file on the same path of the program file and, if not present, also on the current working
directory. If found, it is executed as a "precook" phase to set up the environment for the program execution.

Memory management with .fryrc

You can use the .fryrc file to define the memory limit for your project without needing to specify it as a CLI argument. To
do this, you can use the setMem method provided by the system lib, like this:

_ <- fat.system
setMem(64000) # sets 64k nodes as memory limit

Bootstrap details

CLI options are applied first, except for the memory limit. During the precook phase, fry uses the default limit of 10 million
nodes, regardless of the CLI option. If you define a memory limit in the .fryrc file, that limit takes effect from that point on
and overrides the CLI option for the whole execution. If the .fryrc file does not set a memory limit, the CLI option takes
effect after the precook phase.

The precook scope is invisible by default. After the .fryrc file is executed, a fresh scope is provided for your program, which
allows you to test your code with a very low limit of nodes when using a .fryrc file without affecting the node count. This
also prevents the .fryrc namespace from clashing with your program's global scope. However, if you want to keep the
entries declared in .fryrc in the global scope for configuration purposes, you can call the embedded command
$keepDotFry somewhere in the .fryrc file.

Another possible use, other than setting up memory limit, is to pre-load common imports, for example the standard types:

$keepDotFry
_ <- fat.type._

See also

Embedded commands
System library

Bundling

8

Bundling

Bundling
Fry offers an integrated bundling tool for FatScript code.

Usage

To bundle your project into a single file starting from the entry point, execute:

fry -b sweet mySweetProject.fat

This process consolidates all imports (except literal paths) and trims unnecessary spaces, enhancing load times:

Adds a shebang to bundled code
Receives the execute attribute for file mode

Subsequently, you can run your program:

./sweet

Obfuscating

For optional obfuscation, use -o:

fry -o sweet mySweetProject.fat # creates the obfuscated bundle
./sweet # executes your program as usual

When distributing via public hosts, consider setting a custom key with a local .fryrc. Only the client should be privy to
this key to safeguard the source.

Obfuscation leverages zCode for encoding, ensuring swift decoding. For optimal load times, prefer -b if obfuscation isn't
essential.

Caveats

Though these considerations are usually inconsequential for small projects, bundling larger projects may require additional
organization.

Order Matters

Imports are deduplicated and inlined based on their order of first appearance.
As a result, the sequence in which you import your files plays a critical role in the final bundled output. If two or more
files import the same module, only the first import encountered will be included in the bundle.

Scope of Named Imports

Unbundled code might promote named imports to global scope, a behavior not mirrored in bundled code.
Ensure named imports remain accessible across required scopes. Always validate your bundled output.

https://bash.cyberciti.biz/guide/Shebang

Tooling

9

Tooling

Tooling
Here are a few hints that can enhance your coding experience with FatScript.

Source code formatting

Built-in support

You can apply auto-indentation to your sources using the following command:

fry -f mySweetProgram.fat

Visual Studio Code Extension

To add code formatter support to VS Code, you can install the fatscript-formatter extension. Launch VS Code Quick Open
(Ctrl+P), paste the following command, and press enter:

ext install aprates.fatscript-formatter

fry needs to be installed on your system for this extension to work

Syntax highlighting

Visual Studio Code Extension

To add FatScript syntax highlighting to VS Code, you can install the fatscript-syntax extension. Launch VS Code Quick Open
(Ctrl+P), paste the following command, and press enter:

ext install aprates.fatscript-syntax

You can also find and install these extensions from the VS Code Extension Marketplace.

Nano Syntax File

To install FatScript's syntax highlighting for nano, follow these steps:

1. Download the fat.nanorc file from here.
2. Copy the fat.nanorc file to the nano system directory:

sudo cp fat.nanorc /usr/share/nano/

If the syntax highlighting does not get automatically enabled, you may need to explicitly enable it in your .nanorc file. Refer
to the instructions in the Arch Linux Wiki for more information.

After installing the syntax highlighting, you can also use the code formatter in nano with the following shortcut sequence:

Ctrl+T Execute; and then...
Ctrl+O Formatter

Other tips

Console file navigation

To navigate your project folders from the terminal, you can try using a console file manager such as ranger, paired with nano.
Set it as the default editor for ranger by adding the following line to your ~/.bashrc file:

export EDITOR="nano"

https://marketplace.visualstudio.com/items?itemName=aprates.fatscript-formatter
https://marketplace.visualstudio.com/items?itemName=aprates.fatscript-syntax
https://gitlab.com/fatscript/fry/-/raw/main/extras/fat.nanorc?inline=false
https://wiki.archlinux.org/title/Nano#Syntax_highlighting
https://ranger.github.io/

Syntax

10

Syntax

Syntax
In the following pages, you will find information on the central aspects of writing FatScript code, using both the basic language
features as well as the advanced type system and standard libraries features.

Topics covered

Formatting: how to format FatScript code properly

Imports: how to import libraries into your code

Entries: understanding the concept of entries and scopes

Types: a guide to FatScript type system

Flow control: controlling the program execution with conditionals

Loops: making use of ranges, map-over and while loops

Formatting

11

Formatting

Formatting
In FatScript, whitespace and indentation are irrelevant, yet they are very welcome to make the code more readable and easier to
understand.

Whitespace

A newline character (\n) indicates the end of an expression, except when:
the last token on the line is an operator
the first token of the next line is a non-unary operator
using parentheses to group expressions

Expressions can be on the same line if separated by comma (,) or semicolon (;)

Comments

Comments start with #, and are terminated by a newline:

a = 5 # this is a comment

Note

FatScript does not support multiline comments at the moment. Additionally, text literals may end up as a valid return value if
left as the last standing line, due to the auto-return feature. Therefore, it is recommended to stick to the single line comment
format.

See also

Source auto-formatter

Imports

12

Imports

Imports
Let's unravel the art of importing files and libraries in FatScript! Why? Well, because in this language you can import whenever
your heart desires, simply by using a left arrow <-.

Dot syntax

To use imports with dot syntax, project files and folders should neither start with a digit nor contain symbols.

you can force any path you like by using literal paths

Named import

To import files, use the .fat extension for filenames (or no extension at all), but omit the extension in the import statement.
Here's an example:

ref <- filename

if both x and x.fat files exist, the latter takes precedence

For importing files from folders:

ref1 <- folder.filename
ref2 <- folder.subfolder.filename

To import all files from a folder, leverage the dot-underscore syntax:

lib <- folder._

Please note: only files immediately inside the folder are included using the above syntax. To include files from subfolders,
explicitly mention them. Additionally, a "_.fat" file (or "_" file) inside a folder can override the dot-underscore import behavior.

Element access

Once imported, access elements using dot syntax:

ref1.element1

Element extraction

To extract specific elements from a named import or to avoid prepending the module name every time (e.g., lib.foo),
employ destructuring assignment:

{ foo, bar } = lib

Local import

To import within the current scope, use:

_ <- filename

Local imports, unlike named imports, dump the file content directly into the current scope. Thus, an imported method can be
invoked as baz(arg) rather than ref.baz(arg).

While local imports are best suited for importing types into the global scope, they should be used with caution when importing
library content. Overusing local imports can lead to namespace pollution, which can make it more challenging to follow the
code, because it becomes less apparent where the methods come from.

Important: Named imports are resolved at the global scope, irrespective of where they are declared. This means even if you
declare a named import inside a function or a local scope, it will be globally accessible.

Literal paths

Imports

13

With literal paths, you may use any filename or extension. However, note that those imports are not evaluated during bundling,
but at runtime. Here's an example:

ref <- '_folder/2nd-source.other'

You can also use smart texts as literal paths:

base = 'folder'
file = 'source.xyz'
ref <- '{base}/{file}'

Since FatScript alternatively accepts JSON-like syntax you may even load a JSON file directly as an import:

json <- 'sample/data.json'

Keep in mind that literal paths can make your code more complex, and those imports can only be dynamically resolved, so use
them sparingly.

Import policy

FatScript's "import once policy" uses a flags system to deter redundant file imports. If an import for an already-imported path is
encountered, the import statement is silently skipped.

Yet, if a local import is used within a method body, the import is executed each time the method is invoked.

Entries

14

Entries

Entries
Entries are key-value pairs that exist in the scope where they are declared.

Naming

Entry names (keys) cannot start with an uppercase letter, which is the distinction compared to types. Identifiers are case-
sensitive, so "frenchfries" and "frenchFries" would be considered different entries.

The recommended convention is to use camelCase for entries.

you may use an arbitrary name as key by using dynamic nomination

Declaration and assignment

In FatScript, you can declare entries by simply assigning a value:

isOnline: Boolean = true
age: Number = 25
name: Text = 'John'

Types can also be inferred from assignment:

isOnline = true # Boolean
age = 25 # Number
name = 'John' # Text

Immutable entries

When an entry is declared in FatScript, it is immutable by default. This means that once you assign a value to it, you can't
change it:

fruit = 'banana'
fruit = 'apple' # raises an AssignError because fruit is immutable

Immutable entries are useful when you want to ensure that a value remains constant throughout your program's execution.

Exception to the rule

It's worth mentioning that immutability only applies to the entry itself, but not to its content when it comes to a scope.

In FatScript, a paradox arises because all of the following statements are true:

An immutable entry cannot be changed after being defined.
A scope can always accept new entries.
An entry can store a scope.

See:

s = { a = 1, b = 2 }
s.c = 3 # even though s is immutable it accepts the new value of c
s # now { a = 1, b = 2, c = 3 }

this is not a bug, it is a feature

This is because scopes are passed by reference and can always be "mutated" by appending new entries, even if the entry
holding the scope is immutable. So, in this case, it is the same, but it's not quite the same.

On the other hand, lists declared as immutable behave more consistently with the rule, as new entries cannot be appended to
them.

Mutable entries

Entries

15

Yes, you can declare mutable entries, also known as variables. To declare a mutable entry, use the tilde ~ character:

~ fruit = 'banana'
fruit = 'apple' # ok

Note that even a mutable entry cannot immediately change its type, unless it's erased from the scope. To erase an entry, assign
null to it, and then redeclare it with a new type. Changing types is discouraged by the syntax and not recommended, but it is
possible:

~ color = 32 # creates color as a mutable Number entry
color = 'blue' # raises a TypeError because color is a Number
color = null # entry is erased
color = 'blue' # redefines color with a different type (Text)

you have to declare the entry as mutable again using tilde ~ when redefining after erasure if you want the next value to be
mutable

Dynamic entries

You can create entries with dynamic names using square brackets [ref]:

ref = 'popCorn' # text will be the name of the entry

options = { [ref] = 'is tasty' }

options.[ref] # dynamic syntax: yields 'is tasty', with read and write access
options(ref) # get syntax: yields 'is tasty', but value is read-only
options.popCorn # dot syntax: yields 'is tasty', but has to follow naming rules

all dynamic declarations are mutable entries

This feature allows to dynamically define the names inside a scope and create entries with names that otherwise would not be
accepted by FatScript.

Dynamic entries can also use numeric references, however the reference is converted into text automatically, e.g.:

[5] = 'text stored in entry 5'
$self.['5'] # yields 'text stored in entry 5'
$self.[5] # yields 'text stored in entry 5'

in a different context, not followed by assignment = or preceded by dot notation ., dynamic syntax will be interpreted as a
list declaration

Special entries

Entries with names starting with underscore _ are completely free and dynamic, they don't require tilde ~ and can also change
type without the need of erasure, like variables in JavaScript or Python.

Destructuring assignment

You can copy values of a scope into another scope like so:

_ <- fat.math
distance = (position: Scope): Number -> {
 { x, y } = position # destructuring assignment into method scope
 sqrt(x ** 2 + y ** 2) # calculates distance between origin and (x, y)
}
distance({ x = 3, y = 5 }) # 5.83095189485

You can also use destructuring assignment to expose a certain method or property from a named import:

console <- fat.console
{ log } = console
log('Hello World')

using this syntax with imports, you can choose to bring to the current scope only the elements of the library that you are
interested in using, thus avoiding polluting the namespace with names that would otherwise have no use or could clash
with those of your own writing

Entries

16

JSON-like syntax

FatScript also supports JSON-like syntax for declaring entries:

"nothing": null, # Void entry - distinct behavior, see bellow
"isOnline": true, # Boolean entry
"age": 25, # Number entry
"name": "John", # Text entry
"tags": ["a", "b"], # List entry
"options": { "prop": "other" } # Scope entry

However it might appear that declaring "nothing" creates a "nothing" value of null, it's important to note that the "resulting
entry" doesn't actually exist in the scope. When you try to access that "nothing", FatScript does return null, but if you attempt
to map over the scope, the name of that entry will be missing since it was never truly created.

It's important to note that JSON-like declarations always create immutable entries, so you can't prepend them with the tilde ~
character to make them mutable.

Types

17

Types

Types
Types are used in FatScript to combine data and behavior, acting as templates for creating new replicas (instances).

Naming

Type names are case-sensitive and must start with an uppercase letter.

The recommended convention for type identifiers is PascalCase.

Native Types

FatScript provides several native types:

Any - anything
Void - nothing
Boolean - primitive
Number - primitive
Text - primitive
Method - function or lambda
List - like array or stack
Scope - like object or dictionary
Error - yes, for errors

However, you need to import the types package to access the prototype members for each type.

Custom Types

Besides using the types provided by the language or an external library, you may also create your own types, or extend existing
ones with new behaviors.

Declaration

To define a custom type in FatScript, you can use a simple assignment statement. The type definition can be wrapped in either
parentheses or curly brackets. Both syntaxes are valid and have the same effect. You may also optionally define default values
for the type's properties, as shown in the following examples:

Type definition using curly brackets
Car = { km: Number, color: Text }

Type definition using parentheses with default values
Car = (km = 0, color = 'white')

Global Uniqueness

Although the type definition is stored in the scope where it is declared, the type name must be unique within your program. If
you try to define a type with the same name as an existing one, even in a different scope, an AssignError will be raised,
unless the definition is identical, in which case it will be ignored.

Usage

To create instances of a custom type, call the type name as if it were a method, optionally passing values for the properties:

Type usage from defaults
car = Car()
outputs: { km: Number = 0, color: Text = 'white' }

Type usage defaulting one of the properties
redCar = Car(color = 'red')
outputs: { km: Number = 0, color: Text = 'red' }

clbr://internal.invalid/book/errors.md

Types

18

Type usage, fully qualified
oldCar1 = Car(color = 'blue', km = 38000)
overrides both values

Type usage, args using props sequence
oldCar2 = Car(41000, 'green')
overrides values using type definition order

By default, custom types return a scope of their properties. If you define an apply method, however, the type can return a
different value. For example, here's a custom type Sum with an apply method that returns the sum of its a and b properties:

Sum = (a: Number, b: Number, apply = -> a + b)
Sum(1, 2) # output: 3

note that apply methods do have direct access to instance props

In this example, the output base type of apply is a number, not a scope. This also means that the original properties of the
custom type are lost during instantiation and cannot be accessed again.

Prototype members

Those are special kind of methods, stored inside the type definition:

TypeWithProtoMembers = {
 ~ a: Number
 ~ b: Number

 setA = (newA: Number) -> $self.a = newA
 setB = (newB: Number) -> $self.b = newB
 sum = (): Number -> $self.a + $self.b
}

In this example, setA, setB and sum are prototype members. Note that we needed to use $self, which is an embedded
command that provides a self reference to the instance (or method) scope, so that we could gain access to the props.

Checking types

If you don't know what is the type of an entry you can simply check by comparing with a typename:

place = 'restaurant'
place == Number # false
place == Text # true

alternatively, use typeOf method from sdk lib to extract the typename

Type alias

In FatScript, you can create subtypes by aliasing an existing type. This means that the new type will inherit all of the properties
of the base type. Here's an example:

_ <- fat.type.Text
Id = Text # creates an alias

Note that type aliases are hierarchical and can be used to classify values while still inheriting the same behavior. However,
while the alias is considered equal to the base type, instances of the new type are not considered equal to the base type.

To check if a value is an instance of a type alias or its base type, you can use the less-equal comparison operator <=. This
allows you to accept any type on the alias chain, down to the base type. Here's an example:

Id == Text # true, as Id is an alias of Text
x = Id(123) # id: Id = '123'
x == Text # false, however x is Id it's not Text
x == Id # true, as expected x is of type Id
x <= Text # true, as x is of Id which is an alias of Text

This feature allows for fine-grained matching on specific types, while still maintaining the flexibility to use different aliases for
the same underlying type.

limitation: it is not possible to create aliases for Any, Void, List, or Method

Types

19

Type constraints

In FatScript, you can declare type constraints for method arguments. When a method is called, the argument is automatically
checked against the type constraint. If the argument is not of the expected type or one of its subtypes, a TypeError is raised.

If the type constraint is a base type, any subtype of that type is also accepted as an argument. However, if the type constraint is
a subtype, only arguments that match the subtype are accepted. Here's an example:

generalist = (x: Text) -> x
restrictive = (x: Id) -> x

In this example, the generalist method accepts both Text and Id arguments, because Id is a subtype of Text. The
restrictive method only accepts Id arguments and not Text arguments, because Id is a subtype of Text, but not the
other way around.

It's important to emphasize that custom types are derived from Scope. In this context, Scope would be the generalist type for,
for instance, the custom type Car.

Type inclusions (advanced)

When defining a type, you can add the features of an existing type simply by mentioning it on the type definition. This is called
type inclusion.

For instance, to create a new type RentalCar with the properties of Car and an additional price property, you can write:

RentalCar = {
 # Includes
 Car

 # Additional prop
 price: Number
}

RentalCar(50) # { color: Text = 'white', km: Number = 0, price: Number = 50 }

If a property is not defined in the new type, it will inherit the default value from the included type. In the above example, the
color and km properties of Car are present in RentalCar, with their default values.

Inheriting prototype methods

Suppose we continue from the previous example of type TypeWithProtoMembers that has two properties a and b, and
three prototype methods setA, setB and sum. To create a new type WithMoreMembers that adds a property c, a method
setC and overrides the sum method, you can write:

WithMoreMembers = {
 # Includes
 TypeWithProtoMembers

 # Props (instance arguments)
 ~ a: Number
 ~ b: Number
 ~ c: Number

 # Prototype members (methods)
 setC = (newC: Number) -> $self.c = newC
 sum = (): Number -> $self.a + $self.b + $self.c
}

redeclaring the props allows the new type to also accept arguments at instantiation time, e.g.: WithMoreMembers(1,
2, 3) sets a, b and c

When creating a new instance of WithMoreMembers, all four prototype methods setA, setB, setC and sum will be
available.

Note that if there is a redefinition of a property or method in the new type, the new definition takes precedence.

Type casting

Types

20

In FatScript, the * symbol serves as a type cast operator, allowing you to convert one data type into another. This feature is
particularly useful when you need to explicitly specify the type or perform conversions between compatible types, e.g.:

time.format(Epoch * 1688257765448) # coerces the number into Unix Epoch

Flexible type acceptance

FatScript offers flexibility of type acceptance by implementing a system based on type inclusion. This creates interrelated types
that can be interchangeably used within a method or as List items.

When you define a type, it's possible to incorporate one or more additional types within that definition. Take, for example,
types A, B, and C. If types B and C both include type A in their definitions, then they are seen as sharing the same set of
characteristics derived from A. This means B and C are viewed as sibling types under the umbrella of A.

This system enables a method that is designed to accept an object of type B to also be capable of accepting an object of type C,
and vice versa. This is due to the fact that both types B and C share a common basis in type A.

Here's how it looks in code:

A = (_)
B = (A, b = true)
C = (A, c = true)

method1 accepts both B and C because they both include A
method1 = (a: A) -> ...

method2 accepts C since both B and C include the same set of types
(making them sibling types)
method2 = (x: B) -> ...

this logic also applies to List types, as seen with mixedList
mixedList: List/A = [B(), C()]

type flexibility is only possible if the data type is based on Scope

Caveat

You may have to explicitly check the type, e.g. x == B inside the method body if you only want to handle B, but not C on
your method. Or you can create an alias, e.g. D = A and use C = (D, c = true) as type inclusion to avoid flexible
behavior altogether.

Composite types

In FatScript, composite types allow you to define complex data structures composed of simpler types. They are represented
using slashes / to separate the types within the composite type definition.

Let's go through a few examples and understand how composite types work:

1. ListOfNumbers = List/Number, defines a composite type ListOfNumbers, which is a list that can only
contain numbers.

2. Matrix = List/List/Number, defines a composite type Matrix, which is a list of lists that can only contain
numbers.

3. MethodReturningListOfNumbers = Method/ListOfNumbers, defines a composite type
MethodReturningListOfNumbers, which is a method that returns a ListOfNumbers.

4. NumericScope = Scope/Number, defines a composite type NumericScope, which is a scope whose entries
can only be of type number.

See also

Type package

Any

21

Any

Any
A virtual type that encompasses all types and no types at the same time.

Default type

Any is the inferred type and return type when no type is explicitly annotated in a method. For example:

identity = _ -> _

is equivalent to:

identity = (_: Any): Any -> _

Using Any, be it implicitly or explicitly, disables type checking for an argument. The explicit annotation can be a useful in
cases where you want to make it clear that you are giving flexibility in the type of a parameter.

Being too liberal with Any can make your code less predictable and harder to maintain. It's generally recommended to be more
specific with type annotations whenever possible:

Example of using Any that can lead to issues

console <- fat.console

doubleIt = (arg: Any): Void -> console.log(arg * 2)

doubleIt(2) # prints: '4'
doubleIt('a') # yields: Error: unsupported expression > Text <multiply> Number

This example shows that although the Any type annotation allows flexibility in the type of the argument, it can also result in
unexpected behavior if a value of an unexpected type is passed in. By being more specific with the type annotation, such as
Number, you can make your code more predictable and self-evident.

Example of using a specific type annotation for more predictability

console <- fat.console

doubleIt = (num: Number): Void -> console.log(num * 2)

doubleIt(2) # prints: '4'
doubleIt('a') # yields: TypeError: type mismatch > num

By using Number as the type annotation, the doubleIt method is now more specific and only accepts arguments of type
Number.

Comparisons

The only possible operation with Any is comparing to it, but note that Any accepts all values indistinctly, so there is no
practical use for it:

null == Any # true
true == Any # true
12345 == Any # true
'abcd' == Any # true
[1, 2] == Any # true
{ a = 8 } == Any # true

comparisons with Any can't be used to check for the presence of a value in a scope as even null is accepted

Void

22

Void

Void
When you look into the 'Void', only 'null' can be seen.

Is there anybody out there?

An entry is evaluated to null if not defined on current scope.

You can compare with null using equality == or inequality !=, like:

a == null # true, if 'a' is not defined
0 != null # true, because 0 is a defined value

Keep in mind that you can't declare an entry with no value in FatScript.

While you can assign null to an entry, it causes different behaviors depending on whether the entry already exists in the scope
and whether it's mutable or not:

If an entry hasn't been declared yet, assigning it null has no effect.
If it already exists and is immutable, assigning null raises an error.
If it already exists and is mutable, assigning null removes the entry.

Delete statement

Assigning null to a mutable entry is the same as deleting that entry from the scope. If deleted, nothing is remembered about
that entry in the scope, not even it's original type.

~ m = 4 # mutable number entry
m = null # deletes m from scope

null "values" are always mutable, as in fact nothing is stored about them, and therefore they are the only kind of "value"
that may transition from a mutable state to an immutable state when "reassigned"

Comparisons

You can use Void to check against the value of an entry also, like:

() == Void # true
null == Void # true
false == Void # false
0 == Void # false
'' == Void # false
[] == Void # false
{} == Void # false

Note that Void only accepts null.

Another form of emptiness

Nulls can also be expressed as empty parentheses () and are effectively identical, in terms of behavior in code:

null == null # true
() == null # true
() == () # true

See also

Void prototype extensions

Boolean

23

Boolean

Boolean
Booleans are very primitive, they can only be 'true' or 'false'.

Comparisons

Aside from equality == and inequality !=, booleans also accept the following operators:

& logical AND

true & true == true
true & false == false
false & true == false
false & false == false

AND short-circuits expression if left-hand side is false

| logical OR

true | true == true
true | false == true
false | true == true
false | false == false

OR short-circuits expression if left-hand side is true

% logical XOR (exclusive OR)

true % true == false
true % false == true
false % true == true
false % false == false

XOR always evaluates both sides of the expression

Bang operator

!! coerces any type into boolean, like so:

null -> false
zero (number) -> false
non-zero (number) -> true
empty (text/list/scope) -> false
non-empty (text/list/scope) -> true
method -> true

conditional flows (=>, ?) will implicitly coerce left-hand side to boolean

See also

Boolean prototype extensions
Flow control

Number

24

Number

Number
A mathematical concept used to count, measure and do other maths stuff.

Declaration

The Number type is implemented as double. Here's how to declare a number:

a = 5 # number declaration (immutable)
b: Number = 5 # same effect, with type-checking
c: Number = a # initiating from entry value, also 5
d = 43.14 # with decimals

To declare a mutable entry, prepend it with the tilde operator:

~ a = 6 # mutable number entry
a += 1 # adds 1 to 'a', yields 7

Operating numbers

Numbers accept quite a few operations:

== equal
!= not equal
+ plus
- minus
* multiply
/ divide
% modulus
** power
< less
<= less or equal
> more
>= more or equal
& logical AND
| logical OR

Caveats

For logical operations and flow control, keep in mind that zero is falsy and non-zero is truthy.

For equality operators, although 0 and null are evaluated as falsy, in FatScript they are not the same:

0 == null # false

Precision

Although the arithmetic precision of a IEEE 754 double is higher, fry employs rounding tricks to improve human
readability when printing long decimal sequences of nines or zeros as text. Additionally, it uses an epsilon of 1.0e-06 for
'equality' comparisons between numbers.

In 99.999% of use cases, this approach provides both more convenient comparisons and more natural-looking numbers:

Equality epsilon
x = 1.0e-06
x: Number = 0.000001

Smaller differences are treated as the "same" number by comparison
x == 0.0000015
Boolean: true # the 0.0000005 difference is ignored

Number

25

Floating-point numbers aren't distributed evenly on the number line. They are dense around 0, and as the magnitude increases,
the 'delta' between two expressible values increases:

_____________________________________0_____________________________________
+inf | | | | | | | ||| | | | | | | | -inf

the biggest contiguous integer is 9,007,199,254,740,992 or 2^53

You can still have much larger numbers, around 10^308, which is:

1000
00
00
000

Bear in mind that if you add 1 to 10^308, no matter how many times you do it, it will always result in the same value! You need
to add at least something near 10^293 in a single operation for it to be considered, as the numbers need to be of similar orders
of magnitude.

See also

Number prototype extensions
Math library

Text

26

Text

Text
Texts can hold many characters, and are sometimes referred to as strings.

Declaration

Text entries are declared using quotes:

a = 'hello world' # smart text declaration
a = "hello world" # raw text declaration
a: Text = 'hello world' # smart, optionally verbose

Manipulating text

Concatenation

In FatScript, you can concatenate, or join, two texts using the + operator. This operation connects the two texts into one. For
example:

x1 = 'ab' + 'cd' # Outputs 'abcd'

Text Subtraction

FatScript also supports a text subtraction operation using the - operator. This operation removes a specified substring from the
text. For instance:

x2 = 'ab cd'
x2 - ' ' == 'abcd' # Outputs true

In the above example, the space character ' ' is removed from the original text 'ab cd', resulting in 'abcd'.

Text Selection

Selection allows you to access specific parts of a text using indices. In FatScript, you can use either positive or negative indices.
Positive indices start from the beginning of the text (0 is the first character), and negative indices start from the end of the text
(-1 is the last character).

for detailed explanation about the indexing system in FatScript, refer to the section on accessing and selecting items in List

When only one index is passed to the selection function, a single character from the text is selected. When two indices are
passed to the function, a range of characters from the text is selected. This selection is inclusive, meaning that it includes the
characters at both the start and end indices.

Like with lists, accessing items that are out of valid indices will generate an error. For selections, no errors are generated when
accessing out-of-bounds indices; instead, an empty text is returned.

x3 = 'example'
x3(1) # 'x'
x3(2, 4) # 'amp'
x3(..2) # 'exa'

Special characters

Characters such as quotes ' / " can be escaped with backslash \.

'Rock\'n\'roll'
"Where is \"here\"?"

you only need to escape quotes of same type used as text delimiter

Other supported escape sequences are are:

Text

27

backspace \b
new line \n
carriage return \r
tab \t
escape \e
octet in base-8 representation \ooo
backslash itself \\

Smart texts

When declared with single quotes ', the smart mode is enabled, and interpolation is performed for any code wrapped in curly
brackets {...}:

text = 'world'
interpolated = 'hello {text}' # outputs 'hello world'

the template is processed in a layer with access to current scope

Note that the use of new lines or other smart texts inside the interpolation template code is not supported, but you can make
method calls if you need to compose the result with something more complex.

You can avoid interpolation by escaping the opening bracket:

escaped = 'hello \{text}' # outputs 'hello {text}'

Alternatively, you can avoid interpolation by using raw texts.

Raw texts

When declared with double quotes " the raw text mode is assumed and interpolation is disabled.

Smart mode vs. raw mode example:

'I am smart: {interpolated}' # using value from previous example
I am smart: hello world # replacement occurs

"I am raw: {interpolated}" # brackets are just common characters
I am raw: {interpolated} # no interpolation occurs

Operating texts

== equal
!= not equal
+ plus (concatenate)
- minus (removes substring)
< less (alphanumeric)
<= less or equal (alphanumeric)
> more (alphanumeric)
>= more or equal (alphanumeric)
& logical AND (coerced to boolean)
| logical OR (coerced to boolean)

comparisons are implemented via strcmp function

Encoding

FatScript is designed to operate with text encoded in UTF-8 or ASCII. This design choice acknowledges the prevalence of these
encoding systems and optimizes the language for broad compatibility.

UTF-8 is a multi-byte encoding system capable of representing any character in the Unicode standard. This universal character
encoding scheme uses 8 to 32 bits to represent a character, enabling the depiction of a vast array of symbols from numerous
languages and writing systems. Notably, the first 128 characters (0-127) of UTF-8 align precisely with the ASCII set, making
any ASCII text a valid UTF-8 encoded string.

In FatScript, the Text data type is a sequence of Unicode characters, inherently encoded in UTF-8, therefore operations such as
text.size, text(index), and text(1..4) will correctly count, access, or slice text irrespective of the complexity of

https://man7.org/linux/man-pages/man3/strcmp.3.html

Text

28

the characters. These operations consider a complete multi-byte UTF-8 character as a single unit, ensuring correct and
predictable behavior.

By assuming UTF-8 encoding for text, FatScript ensures seamless interoperability with existing standards, broadens its
applicability across various languages and scripts, and enhances its user experience by treating texts as logically contiguous
sequences of characters.

See also

Text prototype extensions

Method

29

Method

Method
Methods are recipes that can take arguments to "fill in the blanks".

Definition

A method is anonymously defined with a thin arrow ->, like so:

<arguments> -> <recipe>

Arguments can be omitted if none are needed:

-> <recipe> # arity zero

To register a method to the scope, assign it to an identifier:

<identifier> = <arguments> -> <recipe>

The number of arguments in a method signature is fixed, and all arguments are mandatory. However, if you pass in one excess
argument to the method, it can be accessed as an implicit. Others will be ignored.

Arguments are treated as immutable entries within the method's execution scope. If you need optional or mutable arguments,
you can pass in a scope as an argument, which can pack multiple "arguments". Alternatively, you can use a custom type with
default values.

Auto-return

FatScript uses auto-return, meaning the last standing value is returned:

answer: Method = (theGreatQuestion) -> {
 # TODO: explain Life, the Universe and Everything
 42
}

answer("6 x 7 = ?") # outputs: 42

Auto-call trick

If a method is accessed inside a scope with dot syntax and it takes no arguments (arity zero), then it will be called
"automagically":

foo = {
 bar = -> 'hey'
}

foo.bar() # returns 'hey'
foo.bar # also returns 'hey' due to auto-call

Note: these methods can still be referred to without triggering the auto-call feature by using the get syntax:

foo('bar') # yield a reference to the method

Implicit Argument

A convenience offered by FatScript is the ability to reference a value passed to the method without explicitly specifying a name
for it. In this case, the implicit argument is represented by the underscore _.

Here's an example that illustrates the use of implicit arguments:

double = -> _ * 2
double(3) # output: 6

Method

30

You can use implicit arguments whenever you need to perform a simple operation on a single argument without assigning a
specific name to it.

See also

Method prototype extensions

List

31

List

List
Lists are ordered collections of items of the same type, accessed by index.

Definition

Lists are defined with square brackets [], like so:

list: List/Text = ['apple', 'pizza', 'pear']

Lists do not allow mixing of types. The type of a list is determined by the first item added to it, consequently, empty lists are
untyped.

Lists skip empty positions, so an item that evaluates to null is ignored:

a = 1
c = 3
[a, b, c] # outputs: [1, 3] (b is skipped over)

Access

Individual items

List items can be accessed individually with zero-based index call:

list(0) # 'apple'
list(2) # 'pear'

Negative values will index backwards, starting from -1 as the last item:

list(-1) # 'pear'

Accessing items that are out of valid indices will generate an error:

 0 1 2 > 2
Error ['apple', 'pizza', 'pear'] Error
 < -3 -3 -2 -1

Selections

You can pass a second argument to perform an access call as a selection from "start" to "end" index, evaluating as inclusive
indices.

Indexes for start and end work exactly the same as when accessing individual items, so negatives count from the last item and
can be regressive. However, when using selections, no errors are generated when accessing out-of-bounds indices; instead, an
empty list is returned.

list(0, 0) # ['apple']
list(4, 8) # []
list(1, -1) # ['pizza', 'pear']

The same works for range syntax (..):

list(0..0) # ['apple']
list(4..8) # []
list(1..-1) # ['pizza', 'pear']

Yet, with ranges, one index can be left blank, and it assumes start from the first or end on the last item:

list(..1) # ['apple', 'pizza']
list(1..) # ['pizza', 'pear']

Nested lists

List

32

A matrix can be used and accessed like so:

matrix = [
 [1, 2, 3]
 [4, 5, 6]
]

matrix(1)(0) # yields 4 (1: second line, then 0: first index)

for simplicity, the example uses a 2D matrix, but could be n-dimensional

Operations

== equal
!= not equal
+ addition (concatenation effect)
- subtraction (difference effect)
& logical AND
| logical OR

logical AND/OR evaluate empty lists as false, otherwise true

List addition (concatenation)

The list addition operation allows you to combine two lists into a new list:

x = [1, 2, 2, 3]
y = [3, 3, 4, 4]

x + y # result: [1, 2, 2, 3, 3, 3, 4, 4]

In this case, using the addition operator + to merge lists x and y, the elements from both lists are combined into a single list.
The order of the elements in the resulting list is determined by the order in which the lists were added.

there is no removal of duplicate elements during the concatenation

Quick-append

For better performance, you can take advantage of += operator, e.g.:

~ list += [value] # faster

same effect as
~ list = []
list = list + [value] # concatenation (slower)

Another detail of the += operator, which also applies to other types, is the automatic initialization by omission, where if the
entry has not yet been declared previously, it acts as a simple assignment.

List subtraction (difference)

The list subtraction operation allows you to remove elements from the second operand that are present in the first operand,
resulting in a list containing only unique values:

x = [1, 2, 2, 3]
y = [3, 3, 4, 4]

x - y # result: [1, 2]
y - x # result: [4]

In this case, when we subtract the list y from the list x, the elements with the value 3 are removed because they are present in
both lists. The result is the list [1, 2]. Similarly, when we subtract the list x from the list y, the only remaining element is the
value 4.

only exactly identical values are removed during the subtraction

See also

List

33

List prototype extensions
Mapping over a List

Scope

34

Scope

Scope
A scope is like a dictionary with entries inside, where keys hold values.

Definition

Scopes are defined with curly brackets {}, like so:

myCoolScope = {
 place = 'here'
 when = 'now'
}

Scopes store entries in alphabetical order. This becomes evident when you map over a scope.

Access

There are three ways you can directly access entries inside a scope.

Dot syntax

myCoolScope.place # output: 'here'

Get syntax

assuming prop = 'place'
myCoolScope(prop) # output: 'here'

Either way, if the property is not present, null is returned. And if the outer scope is not found in scope, an error is raised.

Optional chaining syntax

You can chain the missing outer by using question-dot ?. operator:

nonExisting?.prop # null

The optional chaining won't raise an error when the outer scope is null.

Operations

== equal
!= not equal
+ addition (merge effect)
- subtraction (difference effect)
& logical AND
| logical OR

logical AND/OR evaluate empty scopes as false, otherwise true

Scope addition (merge)

The second operand works as if it were a patch for the first operand:

x = { a = 1, b = 3 }
y = { b = 2 }

x + y # { a = 1, b = 2 }
y + x # { a = 1, b = 3 }

values from second operand replace values from the first operand

Scope

35

Scope subtraction (difference)

The subtraction operation results in removing the elements from the second operand that are also present in the first operand:

x = { a = 1, b = 3 }
y = { a = 1 }

x - y # { b = 3 }

only values that are exactly identical are removed

See also

Dynamic entries
Scope prototype extensions
Mapping over a scope

Error

36

Error

Error
There is great wisdom in expecting the unexpected too.

Default subtypes

While some generic errors like syntax issues, invalid imports etc. are raised with the base Error type, some others are subtyped:

KeyError: the key (name) is not found in scope
IndexError: index is out of list/text bounds
CallError: a call is made with insufficient arguments
TypeError: type mismatch on method call, return, or assign
AssignError: assigning a new value to an immutable entry
ValueError: type may be okay, but content is not accepted

Comparisons

Errors always evaluate as falsy:

Error() ? 'is truthy' : 'is falsy' # is false

Errors are comparable to their type:

Error() == Error # true

read also about type comparison syntax

A naive way of handling errors could be:

_ <- fat.console
handling the returned error
maybeFail() <= Error => log('an error has happened')
_ => log('success')

this only works if option -e / continue on error is set

Although the naive approach may work, it's hard to know where errors will arise. Therefore, the proper way to deal with errors
is by setting an error handler using the trapWith method found in the failure library.

See also

Failure library
Error prototype extensions

Flow control

37

Flow control

Flow control
Move along in a continuous stream of decisions that should be made.

Fallback

Default or nullish coalescing operations, are defined with double question marks ?? and work the following way:

<maybeNullOrFailedExpression> ?? <fallbackValue>

In case the left-hand side is not null nor Error, then it's used; otherwise, the fallback value is returned.

If

If statements are defined with a question mark ?, like so:

<condition> ? <response>

as there is no alternative null is returned if condition is not met

If-Else

If-Else statements are defined with a question mark ? followed by a colon :, like so:

<condition> ? <response> : <alternativeResponse>

To use multiline If-Else statements, wrap the response in curly brackets {...} like so:

<condition> ? {
 <response>
} : {
 <alternativeResponse>
}

Cases

Cases are defined with the thick arrow => and are automatically chained, creating an intuitive and streamlined syntax similar to
a switch statement without the possibility of fall-through. This allows for unrelated conditions to be mixed together, ultimately
resulting in a more concise if-else-if-else structure:

<condition1> => <responseFor1>
<condition2> => <responseFor2>
<condition3> => <responseFor3>
...

Example:

choose = (x) -> {
 x == 1 => 'a'
 x == 2 => 'b'
 x == 3 => 'c'
}

choose(2) # 'b'
choose(8) # null

To provide a default value for your method, you can add a catch-all case using an underscore _ at the end of the sequence:

choose = (x) -> {
 x == 1 => 'a'
 x == 2 => 'b'
 x == 3 => 'c'

Flow control

38

 _ => 'd'
}

choose(2) # 'b'
choose(8) # 'd'

For more complex scenarios, you can use blocks as outcomes for each case:

...
 condition => {
 # do something
 'foo'
 }
 _ => {
 # do something else
 'bar'
 }
...

Cases must end in a catch-all case _ or end of block. The most effective use of Cases is within methods at the bottom of the
method body.

While it's possible to add nested Cases, it's best to avoid overly complex constructions. This makes code harder to follow and
likely misses the point of using this feature.

It may be more appropriate to extract that logic into a separate method. FatScript encourages developers to split logic into
distinct methods, helping to prevent spaghetti code.

Loops

39

Loops

Loops
Repeat, repeat, repeat, repeat, repeat...

Base syntax

All loops are build with an "at" sign @, like so:

<expression> @ <loopBody>

While loop

The loop body will execute while the expression evaluates to:

true
non-zero number
non-empty text

The execution will terminate when the expression evaluates to:

false
null
zero number
empty text
error

For example, this loop prints numbers 0 to 3:

_ <- fat.console

~ i = 0

(i < 4) @ {
 log(i)
 i += 1
}

Mapping syntax

You can map over ranges, lists and scopes with a mapper, like so:

<range|collection> @ <mapper>

A new list is generated based from the return values of the mapper.

Mapping over a range

Using range operator .. the mapper will receive a number as input sequentially from the left bound to the right bound:

4..0 @ num -> num + 1 # returns [5, 4, 3, 2, 1]

range syntax is inclusive on booth sides, e.g. 0..2 yields 0, 1, 2

There is also half-open range operator ..< exclusive on the right-hand side.

caveat: half-open range won't work with reverse direction, always needs to be from the minimum to maximum

Mapping over a list

The mapper will receive items in order (from left to right):

[3, 1, 2] @ item -> item + 1 # returns [4, 2, 3]

Loops

40

Mapping over a scope

The mapper will receive the names (keys) of the entries stored in the scope in alphabetical order:

{ c = 3, a = 1, b = 2 } @ key -> key # yields ['a', 'b', 'c']

on the examples we have used list and scope literals, but an entry or call that evaluates to a list or a scope will have the
same effect

To access entries in a scope, you refer to it by name, but in this case, it needs to be defined in the outer scope, for example:

myScope = { c = 3, a = 1, b = 2 }
myScope @ key -> myScope(key) # returns [1, 2, 3]

FatScript uses an intelligent caching feature that prevents this syntax from generating additional effort to search for the current
element in the scope while mapping.

Libraries

41

Libraries

Libraries
Let's talk about the sweet fillings baked into FatScript: the libraries!

Standard libraries

Essentials

These are the fundamental libraries you would expect to be available in a programming language, providing essential
functionality:

async - Asynchronous workers and tasks
color - ANSI color codes for console
console - Console input and output operations
curses - Terminal-based user interface
failure - Error handling and exception management
file - File input and output operations
http - HTTP handling framework
math - Mathematical operations and functions
sdk - Fry's software development kit utilities
system - System-level operations and information
time - Time and date manipulation
zCode - Data encoding, hash and uuid methods

Type Package

This package extends the features of FatScript's native types:

Void
Boolean
Number
Text
Method
List
Scope
Error

Extra package

These utilities are implemented in vanilla FatScript:

csv - Rudimentary CSV encoder and decoder
Date - Calendar and date handling
Duration - Millisecond duration builder
elapsed - Elapsed time calculator
HashMap - Quick key-value store
hex - Hexadecimal encoder and decoder
json - JSON codec and data store facilities
Logger - Logging support
mathex - Extended mathematical library
Memo - Generic memoization utility class
regex - Regular expression common patterns
Sound - Sound playback interface
util - Other random utilities
xml - Simplified XML parser and generator

Import-all shorthand

If you want to make all of them available at once, you can simply do the following, and all that good stuff will be available to
your code:

Libraries

42

_ <- fat._

While this feature can be convenient when experimenting on the REPL, be aware that it brings in all the library's constants and
method names, potentially polluting your global namespace.

Additionally, importing everything upfront can add unnecessary overhead to your program's startup time, even if you only need
to use a few methods.

As a best practice, consider importing only the specific modules you need, with named imports. This way, you can keep your
code clean and concise, while minimizing the risk of naming conflicts or performance issues.

Hacking and more

Under the hood, libraries are built using embedded commands. To gain a deeper understanding and explore the inner workings
of the interpreter, dive into this more advanced topic.

async

43

async

async
Asynchronous workers and tasks

Import

_ <- fat.async

Types

The async library introduces two types: Worker and Task

Worker

The Worker is a simple wrapper around an asynchronous operation.

Constructor

Name Signature Brief
Worker (task: Method) Builds a Worker in standby mode

Prototype members

Name Signature Brief
start (): Worker Begins the task
cancel (): Void Cancels the task
await (): Worker Waits for task completion
isDone (): Boolean Checks if the task has completed
hasStarted Boolean Set by start method
hasAwaited Boolean Set by await method
isCanceled Boolean Set by cancel method
result Any Set by await method

Task

A Task represents a time-constrained asynchronous operation. It uses two Workers, one for the task itself and another for the
timeout timer.

Constructor

Name Signature Brief
Task (task: Method, wait: Number) Builds a Task in standby mode

The Task constructor takes two arguments:

task: The method to be executed asynchronously (the method may not take arguments directly, but you may curry
those in using two arrows on the definition -> ->).
wait (optional): The timeout in milliseconds. If the task does not finish within this time, it is cancelled. The default is
40,000ms (40 seconds).

Prototype members

Name Signature Brief
start (): Task Begins the task and its timer

async

44

Name Signature Brief
cancel (): Void Cancels the task and its timer
await (): Task Waits for task completion or timeout
isDone Boolean Set true if task has been completed
hasTimedOut Boolean Set true if task timed out
result Any Set by await method

Standalone Method

Name Signature Brief
selfCancel (): * Terminates the execution of the thread

Usage Notes

Worker instances are mapped to system threads on a one-to-one basis and get executed as per the system's scheduling. This
implies that their execution may not always be immediate. To wait for the result of a Worker or Task, employ the await
method.

Examples

_ <- fat.async
math <- fat.math
time <- fat.time

Define a slow task
slowTask = -> {
 waitTime = math.random * 5000 # Wait up to 5 seconds
 time.wait(waitTime)
 waitTime
}

Start the task as a Worker
worker = Worker(slowTask).start

Get the worker result
result1 = worker.await.result # blocks until task is done

Start a task with timeout
task = Task(slowTask, 3000).start

Get the task result
result2 = task.await.result # blocks until task is done or timeout occurs

the Task's await method will raise AsyncError if the task times out before completion

See also

Time library
Type package

color

45

color

color
ANSI color codes for console

Import

_ <- fat.color

Constants

black, 0
red, 1
green, 2
yellow, 3
blue, 4
magenta, 5
cyan, 6
white, 7
bright.black, 8
bright.red, 9
bright.green, 10
bright.yellow, 11
bright.blue, 12
bright.magenta, 13
bright.cyan, 14
bright.white, 15

Methods

Name Signature Brief
detectDepth (): Number Get console color support
to8 (xr: Any, g: Number = ø, b: Number = ø) Convert RGB to 8-color mode
to16 (xr: Any, g: Number = ø, b: Number = ø) Convert RGB to 16-color mode
to256 (xr: Any, g: Number = ø, b: Number = ø) Convert RGB to 256-color mode

Usage Notes

to8, to16 and to256

The parameter xr can be an optional text representing the color in HTML format. For example, it can be provided as 'fae830'
or '#fae830' (yellow):

color <- fat.console
console <- fat.console

console.log('hey', color.to16('fae830'))
console.log('hey', color.to256('fae830'))

However, if xr is a number between 0 and 255 representing r, then the g and b parameters will be required:

console.log('hey', color.to256(250, 232, 48)) // same result

these methods may produce approximations of the original color in 8, 16 or 256 depths and not the exact true color

See also

Console library
Curses library

color

46

256 Colors

https://www.ditig.com/256-colors-cheat-sheet

console

47

console

console
Console input and output operations

Import

_ <- fat.console

Methods

Name Signature Brief
log (msg: Any, fg: Number = ø, bg: Number = ø): Void Print msg to stdout, with newline
print (msg: Any, fg: Number = ø, bg: Number = ø): Void Print msg to stdout, without newline
stderr (msg: Any, fg: Number = ø, bg: Number = ø): Void Print msg to stderr, with newline
input (msg: Any, mode: Text = null): Text Print msg and return input of stdin
flush (): Void Flush stdout buffer
cls (): Void Clear stdout using ANSI escape codes
moveTo (x: Number, y: Number): Void Move cursor using ANSI escape codes
isTty (): Boolean Check if stdout a terminal device
showProgress (label: Text, fraction: Number): Void Render progress bar, fraction 0 to 1

the output methods in this library ensure thread safety in asynchronous scenarios

Usage Notes

output

By default, stdout and stderr both print to the console. The foreground color (fg) and background color (bg) parameters
are optional.

colors are automatically suppressed if the output buffer is not a TTY

input

The optional mode parameter accepts the following values:

'plain', plain input (no readline cursor, no history)
'quiet', like plain mode, but without feedback
'secret', special mode for password input
null (default), with readline and input history

See also

Color library
Curses library
Elapsed library

curses

48

curses

curses
Terminal-based user interface (ncurses wrapper)

although this is a wrapper, FatScript has it's own way of approaching terminal UI which may differ in some ways from the
curses library

Import

_ <- fat.curses

Methods

Name Signature Brief
box (p1: Scope, p2: Scope): Void Draw square from pos1 to pos2
clear (): Void Clear screen buffer
refresh (): Void Render screen buffer
getMax (): Scope Return screen size as x, y
printAt (pos: Scope, msg: Any, width: Number = ø): Void Print msg at { x, y } pos
makePair (fg: Number = ø, bg: Number = ø): Number Create a color pair
usePair (pair: Number): Void Apply color pair
frameTo (cols: Number, rows: Number) Align view to screen center
readKey (): Text Return key pressed
readText (pos: Scope, width: Number, prev: Text = ø): Text Start a text box input
flushKeys (): Void Flush input buffer
endCurses (): Void Exit curses mode

positions (pos) are of form { x: Number, y: Number }

the methods in this library do not ensure thread safety in asynchronous scenarios, use either the main thread or a single
worker to render console updates

Usage Notes

Any method of this library, except getMax and endCurses, will start curses mode if not yet started. Note that methods such
as log, stderr and input from console library will implicitly call endCurses. However, moveTo, print and flush
will not change the output mode, and can be paired with curses methods, which can be useful in some circumstances.

The letters x and y stand for column and row respectively when calling printAt, where { 0, 0 } is the upper-left corner and
the result of getMax is the just the first coordinate outside the lower-right corner.

special characters on curses only work if a UTF-8 locale can be set

makePair

You can import the color library to use color names and create a combination of foreground and background (pair). Pass null
to apply the default color to the desired parameter.

usePair

The input of this method should be a color pair created with makePair method. It leaves this pair enabled until you call this
function again with a different pair.

readKey

This method is non-blocking and returns null if stdin is empty, otherwise it will return one character at a time.

curses

49

Special keys may be detected and return keywords such as:

arrow keys:
up
down
left
right

edit keys:
delete
backspace
enter
space
tab
backTab (shift+tab)

control keys:
pageUp
pageDown
home
end
insert
esc

other:
resize (terminal window was resized)

the correct detection of keys can depend on the context or platform

readText

Enters text capture mode using an area demarcated by position and width of the text box. If the text is larger than the space, an
automatic text scroll is performed. The full text is returned when enter is pressed, however, if esc is pressed, null is
returned.

See also

Color library
Console library

failure

50

failure

failure
Error handling and exception management

Import

_ <- fat.failure

Methods

Name Signature Brief
trap (): Void Apply generic error handler
trapWith (handler: Method): Void Set a handler for errors in context
untrap (): Void Unset error handler in context

Usage Notes

When an error is created if an error handler is found, seeking from inner to outer execution context, the handler wrapping the
failure is automatically invoked with that error as argument, and the calling context is exited with return value of the error
handler.

it's not possible to set a handler for the global scope

trapWith

This method binds an error handler to the context of the calling site, e.g. when used inside a method it will only protect the
logic executed inside the body of that method.

Example

Define an error handler that prints the error and exits:

console <- fat.console
system <- fat.system
sdk <- fat.sdk

simpleErrorHandler = (error) -> {
 console.log(error)
 sdk.printStack(10)
 system.exit(system.failureCode)
}

Finally, use trapWith method to assign the error handler:

failure <- fat.failure
failure.trapWith(simpleErrorHandler)

Trap it!

You can handle expected errors or pass through the unexpected:

failure <- fat.failure
_ <- fat.type.Error

MyError = Error

errorHandler = (error) -> {
 error == MyError => 0 # handle (expected)
 _ => error # pass through (unexpected)
}

failure

51

unsafeMethod = (n) -> {
 failure.trapWith(errorHandler)
 n < 10 ? MyError('arg is less than ten')
 n - 10
}

this only works if option -e / continue on error is not set

In this case the program will not crash if you call unsafeMethod(5), but if you comment out the trapWith line, you will
see it crashing with MyError.

See also

Error (syntax)
Error prototype extensions

file

52

file

file
File input and output operations

Import

_ <- fat.file

Type contributions

Name Signature Brief
FileInfo (modTime: Epoch, size: Text) File metadata

Methods

Name Signature Brief
basePath (): Text Extract path where app was called
exists (path: Text): Boolean Check file exists on provided path
read (path: Text): Text Read file from path (text mode)
write (path: Text, src): Boolean Write src to file and return success
append (path: Text, src): Boolean Append to file and return success
remove (path: Text): Boolean Remove file and return success
isDir (path: Text): Boolean Check if path is a directory
mkDir (path: Text, safe: Boolean) Create a directory
lsDir (path: Text): List Get list of files in a directory
stat (path: Text): FileInfo Get file metadata

currently only text mode is supported (binary mode is not supported), but there is a proposal to add support for it in the
future

Usage Notes

read

On exception:

logs error to stderr
returns null

read cannot see builtin "files", but readLib from sdk lib can

write/append

Exceptions:

logs error to stderr
returns false

mkDir

If safe is set to true, the directory gets 0700 permission instead of default 0755, which is less protected.

See also

Csv library

https://gitlab.com/fatscript/fry/issues/7

file

53

Json library

http

54

http

http
HTTP handling framework

Import

_ <- fat.http

Route

A route is a structure used to map HTTP methods to certain path patterns, specifying what code should be executed when a
request comes in. Each route can define a different behavior for each HTTP method (POST, GET, PUT, DELETE).

Constructor

Name Signature Brief
Route (path: Text, post: Method, get: Method, put: Method, delete: Method) Constructs a Route object

each implemented method receives an HttpRequest as argument and shall return an HttpResponse object

HttpRequest

An HttpRequest represents an HTTP request message. This is what your server receives from a client when it makes a
request to your server.

Constructor

Name Signature Brief
HttpRequest (method: Text, path: Text, params: Scope, headers: List/Text, data: Text) Constructs an HttpRequest object

HttpResponse

An HttpResponse represents an HTTP response message. This is what a server sends back to the client in response to an
HTTP request.

Constructor

Name Signature Brief
HttpResponse (status: Number, headers: List/Text, data: Text) Constructs an HttpResponse object

Methods

Name Signature Brief
setHeaders (headers: List): Void Set headers of requests
post (url: Text, body, wait): HttpResponse Create/post body to url
get (url: Text, wait): HttpResponse Read/get from url
put (url: Text, body, wait): HttpResponse Update/put body to url
delete (url: Text, wait): HttpResponse Delete on url
escape (url: Text): Text Encode text to url-safe
unescape (url: Text): Text Decode url-safe text
setName (name: Text): Void Set user agent/server name
listen (port: Number, routes: List/Route) Endpoint provider (server mode)

http

55

body: Text and wait: Number are always optional parameters, being that wait is the maximum waiting time and
the default is 30,000ms (30 seconds)

Usage Notes

Client mode

For data in HttpResponse you can decode a JSON response to FatScript scope by using the fromJson method, or to
post a FatScript scope as JSON you can encode using the toJson method, both in fat.extra.json library.

The default headers are:

[
 "Accept: application/json; charset=UTF-8"
 "Content-Type: application/json; charset=UTF-8"
]

You can set custom request headers like so:

http <- fat.http
_ <- fat.extra.json

url = ...
token = ...
data = ...

http.setHeaders([
 "Accept: application/json; charset=UTF-8"
 "Content-Type: application/json; charset=UTF-8"
 "Authorization: Bearer " + token # custom header
])

http.post(url, toJson(data))

setting headers will completely replace previous list with new list

Server mode

Handling HTTP Responses

The FatScript server automatically handles common HTTP status codes such as 200, 400, 404, 405, 500, and 501. Being 200
the default when constructing an HttpResponse object.

In addition to the common status codes, you can also explicitly return other status codes, such as 201, 202, 203, 204, 205, 206,
301, 401, and 403, by specifying the status code in the HttpResponse object, for example: HttpResponse(status =
401). In all cases, where applicable, the server provides default plain text bodies. However, you have the option to override
these defaults and provide your own custom response bodies when necessary.

By automatically handling these status codes and providing default response bodies, the FatScript server simplifies the
development process while still allowing you to have control over the response content when needed.

if the status code doesn't belong to any of the above, the server will return a 500 code

See an example of a simple text file HTTP server:

_ <- fat.type.Text
file <- fat.file
http <- fat.http
{ Route, HttpRequest, HttpResponse } = http

adapt to content location
basePath = '/home/user/contentFolder'

restrict to text format extensions only
getContentType = (path: Text): Text -> {
 ext2 = path(-3..).toLower
 ext3 = path(-4..).toLower
 ext4 = path(-5..).toLower

http

56

 ext4 == '.html' => 'Content-Type: text/html'
 ext3 == '.htm' => 'Content-Type: text/html'
 ext2 == '.js' => 'Content-Type: application/javascript'
 ext4 == '.json' => 'Content-Type: application/json'
 ext3 == '.css' => 'Content-Type: text/css'
 ext2 == '.md' => 'Content-Type: text/markdown'
 ext3 == '.xml' => 'Content-Type: application/xml'
 ext3 == '.csv' => 'Content-Type: text/csv'
 ext3 == '.txt' => 'Content-Type: text/plain'
 ext4 == '.svg' => 'Content-Type: image/svg+xml'
 ext3 == '.rss' => 'Content-Type: application/rss+xml'
 ext4 == '.atom' => 'Content-Type: application/atom+xml'
 _ => null
}

charset = '; charset=UTF-8'

routes: List/Route = [
 Route(
 '*'
 get = (request: HttpRequest): HttpResponse -> {
 path = basePath + request.path
 type = getContentType(path)

 !type => HttpResponse(status = 403) # forbidden
 file.exists(path) => HttpResponse(data = file.read(path), headers = [type +
charset])
 _ => HttpResponse(status = 404) # not found
 }
)
]

http.listen(8080, routes)

Note that FatScript currently does not support binary data handling, but there is a proposal to add support for it in the future.

https://gitlab.com/fatscript/fry/-/issues/7

math

57

math

math
Mathematical operations and functions

Import

_ <- fat.math

Constants

e, natural logarithm constant 2.71...
maxInt, 9007199254740992
minInt, -9007199254740992
pi, ratio of circle to its diameter 3.14...

read more about number precision in FatScript

Methods

Name Signature Brief
abs (x: Number): Number Return absolute value of x
ceil (x: Number): Number Return smallest integer >= x
floor (x: Number): Number Return largest integer <= x
isInf (x: Number): Boolean Return true if x is infinity
isNan (x: Any): Boolean Return true if x is not a number
ln (x: Number): Number Return natural logarithm of x
random (): Number Return pseudo-random, where 0 <= n < 1
sqrt (x: Number): Number Return the square root of x
sin (x: Number): Number Return the sine of x
cos (x: Number): Number Return the cosine of x
asin (x: Number): Number Return the arc sine of x
acos (x: Number): Number Return the arc cosine of x
atan (x: Number, y = 1): Number Return the arc tangent of x, y
max (v: List/Number): Number Return maximum value in vector
min (v: List/Number): Number Return the minimum value in vector
sum (v: List/Number): Number Return the sum of vector

Example

math <- fat.math # named import
math.abs(-52) # yields 52

See also

Number (syntax)
Number prototype extensions
Extended mathematical library

sdk

58

sdk

sdk
Fry's software development kit utilities

this is a special library that exposes some of the inner elements of fry interpreter to be used as debug tools (ast, printStack,
readLib) or building blocks for advanced features (eval, getVersion, typeOf)

Import

_ <- fat.sdk

Methods

Name Signature Brief
ast (_): Void Print abstract syntax tree of node
stringify (_): Text Converts node to json text
eval (_): Any Interprets text as FatScript program
getVersion (): Text Return fry version
printStack (depth: Number): Void Print execution context stack trace
readLib (ref: Text): Text Return fry library source code
typeOf (_): Text Return type of node
isMain (): Boolean Is executing as main or module
getMeta (): Scope Return interpreter's metadata

Example

_ <- fat.sdk
_ <- fat.console

print(readLib('fat.extra.csv')) # prints the csv library implementation

readLib cannot see external files, but read from file lib can

system

59

system

system
System-level operations and information

Import

_ <- fat.system

Aliases

Name Original Type Brief
ExitCode Number Exit status or return code
CommandResult Scope Contains code and out (output)

Constants

successCode, 0: ExitCode
failureCode, 1: ExitCode

Methods

Name Signature Brief
args (): List/Text Return list of args passed from shell
exit (code: Number): * Exit program with provided exit code
getEnv (var: Text): Text Get env variable value by name
shell (cmd: Text): ExitCode Execute cmd in shell, return exit code
capture (cmd: Text): CommandResult Capture the output of cmd execution
fork (args: List/Text, out: Text = ø) Start background process, return PID
kill (pid: Number): Void Send SIGTERM to process by PID
getLocale (): Text Get current locale setting
setLocale (cmd: Text): Number Set current locale setting
getMacId (): Text Get machine identifier (MAC address)
setKey (key: Text): Void Set key for obfuscated bundles
setMem (mem: Number): Void Set memory limit (node count)
runGC (): Number Run GC, return elapsed in milliseconds

Usage Notes

Heads Up!

It is important to exercise caution and responsibility when using the getEnv, shell, capture, fork and kill methods.
The system library provides the capability to execute commands directly from the operating system, which can introduce
security risks if not used carefully.

To mitigate potential vulnerabilities, avoid using user input directly in constructing commands passed to these methods. User
input should be validated to prevent command injection attacks and other security breaches.

setKey

Use preferably on .fryrc file like so:

_ <- fat.system
setKey('secret') # will encode and decode bundles with this key

system

60

See more about obfuscating.

setMem

Use preferably on .fry file like so:

_ <- fat.system
setMem(5000) # ~2mb

See more about memory management.

get/set locale

The fry interpreter will attempt to initialize LC_ALL locale to C.UTF-8 and if that locale is not available on the system tries
to use en_US.UTF-8, otherwise, the default locale will be used.

See more about locale names.

locale configuration applies only to application, and is not persisted after fry exits

https://www.gnu.org/software/libc/manual/html_node/Locale-Names.html

time

61

time

time
Time and date manipulation

Import

_ <- fat.time

Aliases

Name Original Type Brief
Epoch Number Unix epoch time in milliseconds

number type is automatically imported with this import

Methods

Name Signature Brief
setZone (offset: Number): Void Set timezone in milliseconds
getZone (): Number Get current timezone offset
now (): Epoch Get current UTC in Epoch
format (date: Text, fmt: Text = ø): Epoch Convert Epoch to date format
parse (date: Text, fmt: Text = ø): Epoch Parse date to Epoch
wait (ms: Number): Void Wait for milliseconds (sleep)

Usage Notes

Epoch

In FatScript time is represented as an arithmetic type so that you can do maths.

You can get the elapsed time between time1 and time2 like:

elapsed = time2 - time1

You can also check if time2 happens after time1, simply like:

time2 > time1

format

Formats text date as "%Y-%m-%d %H:%M:%S.milliseconds" (default), when fmt is omitted.

milliseconds can only be transformed in default format, otherwise the precision is up to seconds

fmt argument

The format specification is a text containing a special character sequence called conversion specifications, each of which is
introduced by a '%' character and terminated by some other character known as a conversion specifier. All other characters are
treated as ordinary text.

Specifier Meaning
%a Abbreviated weekday name
%A Full weekday name
%b Abbreviated month name
%B Full month name

time

62

Specifier Meaning
%c Date/Time in the format of the locale
%C Century number [00-99], the year divided by 100 and truncated to an integer
%d Day of the month [01-31]
%D Date Format, same as %m/%d/%y
%e Same as %d, except single digit is preceded by a space [1-31]
%g 2 digit year portion of ISO week date [00,99]
%F ISO Date Format, same as %Y-%m-%d
%G 4 digit year portion of ISO week date
%h Same as %b
%H Hour in 24-hour format [00-23]
%I Hour in 12-hour format [01-12]
%j Day of the year [001-366]
%m Month [01-12]
%M Minute [00-59]
%n Newline character
%p AM or PM string
%r Time in AM/PM format of the locale
%R 24-hour time format without seconds, same as %H:%M
%S Second [00-61], the range for seconds allows for a leap second and a double leap second
%t Tab character
%T 24-hour time format with seconds, same as %H:%M:%S
%u Weekday [1,7], Monday is 1 and Sunday is 7
%U Week number of the year [00-53], Sunday is the first day of the week

%V
ISO week number of the year [01-53]. Monday is the first day of the week. If the week containing January 1st has
four or more days in the new year then it is considered week 1. Otherwise, it is the last week of the previous year,
and the next year is week 1 of the new year.

%w Weekday [0,6], Sunday is 0
%W Week number of the year [00-53], Monday is the first day of the week
%x Date in the format of the locale
%X Time in the format of the locale
%y 2 digit year [00,99]
%Y 4-digit year (can be negative)
%z UTC offset string with format +HHMM or -HHMM
%Z Time zone name
%% % character

Under the hood format uses C's strftime and parse uses C's strptime, but the above format specification table applies pretty
much both ways.

https://man7.org/linux/man-pages/man3/strftime.3.html
https://man7.org/linux/man-pages/man3/strptime.3.html

zCode

63

zCode

zCode
Data encoding, hash and uuid methods

Import

_ <- fat.zcode

Methods

Name Signature Brief
getHash (msg: Text): Number Get 32-bit hash of text
getUuid (): Text Generate a UUID (version 4)
encrypt (msg: Text, key: Text = ø): Text Encode msg to zCode using key
decrypt (msg: Text, key: Text = ø): Text Decode zCoded msg using key

Usage Notes

You can omit or pass a blank key '' for using the default key.

Heads Up!

Although zCode makes encoded text "non-human-readable", this schema is not cryptographically safe! DO NOT use it alone
to protect data!

If paired with a custom key that is not stored alongside the message it may offer some data protection.

UUID method conformance

A UUID, or Universally Unique Identifier, is a 128-bit number used to identify objects or entities in computer systems. The
provided implementation generates random UUIDs as text that follow the format of version 4 RFC 4122 specification, but does
not strictly adhere to the required cryptographically secure randomness. In practice, the collision risk has an extremely low
probability and is very unlikely to occur, and for most applications can be considered good enough.

See also

Hex library

type._

64

type._

types package
Prototype extensions for native types:

Void
Boolean
Number
Text
Method
List
Scope
Error

FatScript does not load these definitions automatically into global scope, therefore you have to explicitly import those
where needed

Importing

If you want to make all of them available at once you can simply write:

_ <- fat.type._

...or import one-by-one, as needed, e.g.:

_ <- fat.type.List

Common trait

All types on this package support the following prototype methods:

apply (constructor)
isEmpty
nonEmpty
size
toText

See also

Types (syntax)

Void

65

Void

Void
Void prototype extensions

Import

_ <- fat.type.Void

Constructor

Name Signature Brief
Void (val: Any) Return null, just ignore argument

Prototype members

Name Signature Brief
isEmpty (): Boolean Return true, always
nonEmpty (): Boolean Return false, always
size (): Number Return 0, always
toText (): Text Return 'null' as text

Example

_ <- fat.type.Void
x.isEmpty # true, since x has not been declared

See also

Void (syntax)
Type package

Boolean

66

Boolean

Boolean
Boolean prototype extensions

Import

_ <- fat.type.Boolean

Constructor

Name Signature Brief
Boolean (val: Any) Coerces value to boolean

Prototype members

Name Signature Brief
isEmpty (): Boolean Return true if false
nonEmpty (): Boolean Return false if true
size (): Number Return 1 if true, 0 if false
toText (): Text Return 'true' or 'false' as text

Examples

_ <- fat.type.Boolean

x = true
x.isEmpty # false, since x is true

Boolean('false') # yields true, because text is non-empty
Boolean('') # yields false, because text is empty

note that the constructor does not attempt to convert value from text, which is consistent with flow control evaluations,
and you can use a simple case if you need to make conversion from text to boolean

See also

Boolean (syntax)
Type package

Number

67

Number

Number
Number prototype extensions

Import

_ <- fat.type.Number

Constructor

Name Signature Brief
Number (val: Any) Text to number or collection size

performs the conversion from text to number assuming decimal base

Prototype members

Name Signature Brief
isEmpty (): Boolean Return true if zero
nonEmpty (): Boolean Return true if non-zero
size (): Number Return absolute value, same as math.abs
toText (): Text Return number as text
format (fmt: Text): Text Return number as formatted text

Example

_ <- fat.type.Number
x = Number('52') # number: 52
x.toText # text: '52'

format

The format method is used to convert numbers into strings in various ways. The basic structure of a format specifier is %
[flags][width][.precision][type]. Here's what each of these components mean:

flags are optional characters that control specific formatting behavior. For example, 0 can be used for zero-padding
and - for left-justification.

width is an integer that specifies the minimum number of characters to be printed. If the value to be printed is shorter
than this number, the result is padded with blank spaces or zeros, depending on the flag used.

precision is an optional number following a . that specifies the number of digits to be printed after the decimal
point.

type is a character that specifies how the number should be represented. The common types are f (fixed-point
notation), e (exponential notation), g (either fixed or exponential depending on the magnitude of the number), and a
(hexadecimal floating-point notation).

Examples:

%5.f: This will print the number with a total width of 5 characters, with no digits after the decimal point (because the
precision is f, which means fixed-point, but no number follows the dot). It will be right-justified because no - flag is
used.

%05.f: Similar to the above, but because the 0 flag is used, the empty spaces will be filled with zeros.

%8.2f: This will print the number with a total width of 8 characters, with 2 digits after the decimal point.

Number

68

%-8.2f: Similar to the above, but the number will be left-justified because of the - flag.

%.2e: This will print the number using exponential notation, with 2 digits after the decimal point.

%.2a: This will print the number using hexadecimal floating-point notation, with 2 digits after the hexadecimal point.

%.2g: This will print the number in either fixed-point or exponential notation, depending on its magnitude, with a
maximum of 2 significant digits.

See also

Number (syntax)
Math library
Type package

Text

69

Text

Text
Text prototype extensions

Import

_ <- fat.type.Text

Constructor

Name Signature Brief
Text (val: Any) Coerces value to text, same as .toText

Prototype members

Name Signature Brief
isEmpty (): Boolean Return true if length is zero
nonEmpty (): Boolean Return true if non-zero length
size (): Number Return text length
toText (): Text Force text interpolation
replace (old: Text, new: Text): Text Replace old with new
indexOf (frag: Text): Number Get fragment index, -1 if absent
contains (frag: Text): Boolean Check if text contains fragment
split (sep: Text): List/Text Split text by sep into list
toLower (): Text Return lowercase version of text
toUpper (): Text Return uppercase version of text
trim (): Text Return trimmed version of text
match (regex: Text): Boolean Return text is match for regex

Example

_ <- fat.type.Text
x = 'banana'
x.size # yields 6
x.replace('nana', 'nquet'); # yields 'banquet'

See also

Text (syntax)
Type package
Regex library

Method

70

Method

Method
Method prototype extensions

Import

_ <- fat.type.Method

Constructor

Name Signature Brief
Method (val: Any) Wrap val in a method

Prototype members

Name Signature Brief
isEmpty (): Boolean Return false, always
nonEmpty (): Boolean Return true, always
size (): Number Return 1, always
toText (): Text Return 'Method' text literal
arity (): Number Return method arity

Example

_ <- fat.type.Method
x = (): Number -> 3
x.toText # yields 'Method'

See also

Method (syntax)
Type package

List

71

List

List
List prototype extensions

Import

_ <- fat.type.List

Constructor

Name Signature Brief
List (val: Any) Wrap val into a list

Prototype members

Name Signature Brief
isEmpty (): Boolean Returns true if length is zero
nonEmpty (): Boolean Returns true if length is non-zero
size (): Number Returns list length
toText (): Text Returns 'List' as text literal
join (sep: Text): Text Joins list with separator into text
flatten (): List Flattens list of lists into one list
find (p: Method): Any Returns first matching item or null
contains (p: Method): Boolean Checks if list contains match for predicate
filter (p: Method): List Returns sub-list matching predicate
reverse (): List Returns a reversed copy of the list
shuffle (): List Returns a shuffled copy of the list
unique (): List Returns a list of unique items
sort (): List Returns a sorted copy of the list
sortBy (key: Any): List Returns a sorted copy of the list *
indexOf (item: Any): Number Returns item index, -1 if absent

Example

_ <- fat.type.List
x = ['a', 'b', 'c']
x.size # yields 3

Sorting

The sort and sortBy methods use the quicksort algorithm with random pivot selection. This approach is known for its
efficiency and generally operates at an average-case time complexity of O(n log n), making it suitable for most datasets. While
sorting is generally efficient, the original order of equivalent elements cannot be guaranteed, which could be an issue when the
initial sequence of similar elements is important (known as stable sorting). For more advanced use cases, consider partitioning
your dataset into groups first.

sortBy accepts a textual parameter for key if it is a list of Scope, or a numerical parameter if it is a list of List
(matrix), representing the index

See Also

List (syntax)
Type package

Scope

72

Scope

Scope
Scope prototype extensions

Import

_ <- fat.type.Scope

Constructor

Name Signature Brief
Scope (val: Any) Wrap val into a scope

Prototype members

Name Signature Brief
isEmpty (): Boolean Return true if size is zero
nonEmpty (): Boolean Return true if non-zero size
size (): Number Return number of entries
toText (): Text Return 'Scope' text literal

Example

_ <- fat.type.Scope
x = { num = 12, prop = 'other' }
x.size # yields 2

See also

Scope (syntax)
Type package

Error

73

Error

Error
Error prototype extensions

Import

_ <- fat.type.Error

Aliases

KeyError
IndexError
CallError
TypeError
AssignError
ValueError

Constructor

Name Signature Brief
Error (val: Any) Return val coerced to text wrapped in error

Prototype members

Name Signature Brief
isEmpty (): Boolean Return true, always
nonEmpty (): Boolean Return false, always
size (): Number Return 0, always
toText (): Text Return error text val

Example

_ <- fat.type.Error
x = Error('ops')
x.toText # yields "Error: ops"

...or something unexpected
e = undeclared.item # raises Error
e.toText # yields "can't resolve scope of 'item'"

See also

Failure library
Error (syntax)
Type package

extra._

74

extra._

extra package
Utilities implemented in vanila FatScript:

csv - Rudimentary CSV encoder and decoder
Date - Calendar and date handling
Duration - Millisecond duration builder
elapsed - Elapsed time calculator
HashMap - Quick key-value store
hex - Hexadecimal encoder and decoder
json - JSON codec and data store facilities
Logger - Logging support
mathex - Extended mathematical library
Memo - Generic memoization utility class
regex - Regular expression common patterns
Sound - Sound playback interface
util - Other random utilities
xml - Simplified XML parser and generator

Importing

If you want to make all of them available at once you can simply write:

_ <- fat.extra._

...or import one-by-one, as needed, e.g.:

_ <- fat.extra.json

Developer note

Currently most of these utilities are not resource or performance optimized.

The intent here was more of providing simple features, as basic templates that can be pulled out via readLib, so any developer
with particular requirements will have a starting point for their own implementations.

csv

75

csv

csv
Rudimentary CSV encoder and decoder

Import

_ <- fat.extra.csv

types package is automatically imported with this import

Variables

These entries are defined via import and can be updated afterwards to configure library methods behavior:

csvSeparator, default is comma ','
csvReplacement, default is empty text ''

Methods

Name Signature Brief
toCsv (header: List/Text, rows: List/Scope): Text Build csv from rows
fromCsv (csv: Text): List/Scope Parse csv into list of rows

Usage

toCsv

Sample code:

_ <- fat.extra.csv

headers = ['name', 'stock', 'sale']

data = [
 { sale = true, stock = 52, name = 'Apple' }
 { sale = false, stock = 35, name = 'Orange' }
 { sale = true, stock = 24, name = 'Banana' }
]

toCsv(headers, data) # name,stock,sale\nApple,52,true\nOrange,35,false...

csvReplacement is used by toCsv as replacement in case a csvSeparator is found within a text being encoded

fromCsv

Sample code:

csvData = fromCsv(data) # original data List/Scope

escaping input containing csvSeparator with quotes is not supported

See also

Extra package

Date

76

Date

Date
Calendar and date handling

operations like addition and subtraction of days, months, and years, ensuring accurate handling of various date-related
complexities such as leap years and month-end calculations

Import

_ <- fat.extra.Date

time library, math library, Error type, Text type, List type, Number type, Duration type are automatically imported with
this import

Date Type

Date offers a comprehensive solution for managing dates, including leap years and time of day.

Properties

year: Number - Year of the date
month: Number - Month of the date
day: Number - Day of the date
tms: Millis - Time of the day in milliseconds

default value points to: 1 of January of 1970

Prototype Members

Name Signature Brief
fromEpoch (ems: Epoch): Date Creates a Date instance from an epoch time
isLeapYear (year: Number): Boolean Determines if a year is a leap year
normalizeMonth (month: Number): Number Normalizes the month number
daysInMonth (year: Number, month: Number): Number Returns number of days in month of year
isValid (year, month, day, tms): Boolean Validates the date components
truncate (): Date Truncates the time of day
toEpoch (): Epoch Converts the Date instance to epoch time
addYears (yearsToAdd: Number): Date Adds years to the date
addMonths (monthsToAdd: Number): Date Adds months to the date
addWeeks (weeksToAdd: Number): Date Adds weeks to the date
addDays (daysToAdd: Number): Date Adds days to the date

Usage Examples

_ <- fat.extra.Date

Create a Date instance
myDate = Date(2023, 1, 1)

Add one year to the date
newDate = myDate.addYears(1)

Add two weeks to a date
datePlusTwoWeeks = myDate.addWeeks(2)

Create a Date from epoch time (in milliseconds)
result is influenced by current timezone, see: time.setZone

Date

77

epochTime = 1672531200000
dateFromEpoch = Date.fromEpoch(Epoch(epochTime))

Convert a date to epoch time
epochFromDate = myDate.toEpoch

Duration

78

Duration

Duration
Millisecond duration builder

In FatScript time is natively expressed in milliseconds, and this type provides a simple way to express different time
magnitudes effortlessly into Millis.

Import

_ <- fat.extra.Duration

Aliases

Name Original Type Brief
Millis Number Time in milliseconds

Constructor

Name Signature Brief
Duration (val: Number) Create a Millis duration converter

Prototype members

Name Signature Brief
nanos (): Millis Interpret value as nanoseconds
micros (): Millis Interpret value as microseconds
millis (): Millis Interpret value as milliseconds
seconds (): Millis Interpret value as seconds
minutes (): Millis Interpret value as minutes
days (): Millis Interpret value as days
weeks (): Millis Interpret value as weeks
months (): Millis Interpret value as months (aprox.)
years (): Millis Interpret value as years (aprox.)

Example

_ <- fat.extra.Duration
time <- fat.time

fiveSeconds = Duration(5).seconds
time.wait(fiveSeconds) # sleeps thread for 5 seconds

elapsed

79

elapsed

elapsed
Elapsed time calculator

Import

_ <- fat.extra.elapsed

Methods

Name Signature Brief
getElapsed (since: Epoch): Text Return elapsed time as text
showElapsed (label: Text, since: Epoch): Text Log line with elapsed time

time library is automatically imported with this import

Usage Notes

Example:

_ <- fat.extra.elapsed
start = now() # see: time library
ms = 300
wait(ms)
showElapsed('took', start) # prints 'took 300 ms'

elapsed will automatically round up milliseconds to seconds, minutes or hours, keeping only the integer part only

See also

Console library
Extra package

HashMap

80

HashMap

HashMap
An optimized in-memory key-value store, serving as a better performance replacement for default Scope implementation,
designed for handling large data sets efficiently.

the speed gains will come at the expense of more memory usage

Import

_ <- fat.extra.HashMap

Constructor

Name Signature Brief
HashMap (capacity: Number = 97) Create a HashMap with a specified capacity

Prototype members

Name Signature Brief
set (key: Text, value: Any): Any Set a key-value pair in the HashMap
get (key: Text): Any Get the value associated with a key
keys (): List/Text Return a list of all keys in the HashMap
values (): List/Any Return a list of all values in the HashMap

Example

_ <- fat.extra.HashMap

hmap = HashMap()
hmap.set('key1', 'value1')

hmap.get('key1') # yields 'value1'
hmap.keys # yields ['key1']
hmap.values # yields ['value1']

hex

81

hex

hex
Hexadecimal encoder and decoder

Import

_ <- fat.extra.hex

Constants

hexDigits, '0123456789abcdef'

Methods

Name Signature Brief
toHex (dec: Number): Text Encode decimal number to hex
fromHex (hex: Text): Number Decode hex text to number

maximum value to be encoded / decoded is limited to numeric precision

Usage Notes

Example:

toHex(128) # Text: '80'
fromHex('FFFFFF') # Number: 16777215

toHex does not implement leading-zero padding, but this can be accomplished with use of padLeft method on util lib

See also

Extra package

json

82

json

json
JSON codec and data store facilities

Import

_ <- fat.extra.json

file library, sdk library, zcode library, Error type, Text type, Void type and Method type are automatically imported with
this import

Aliases

Name Original Type Brief
FileError Error Custom error type for file-related operations

Mixins

The json library introduces two mixin types: Storable and EncryptedStorable

Storable

The Storable mixin provides methods for storing and retrieving objects in the filesystem using JSON serialization.

Prototype members

Name Signature Brief
list (): List/Text Gets list of ids for stored instances
load (id: Text): Any Loads an object from the filesystem
save (): Boolean Saves the current object instance
erase (): Boolean Deletes the file associated with the id

the load and save methods throw FileError on failure

EncryptedStorable

Extends Storable with encryption capabilities for safer data storage. Requires an implementation of getEncryptionKey
method.

Standalone Methods

Name Signature Brief
toJson (_): Text Build json from native types
fromJson (_): Any Parse a json to native types

Usage Notes

"With great power comes great responsibility" -Peter Parker

Since FatScript alternatively accepts JSON-like syntax, fromJson actually uses FatScript internal lexer/parser via eval, which
is blazing fast, but may or not yield exactly what one is expecting from a JSON parser.

For example, once the bellow fragment is parsed, since null in FatScript is absence of value, there would be no entry
declarations for "prop":

"prop": null

json

83

Therefore, reading with fromJson and writing back with toJson is not necessarily an idempotent operation.

Heads Up!

The fromJson method should be perfectly fine and safe for reading config files or reading back data stored via toJson.

However, since fromJson ingests data via sdk.eval a specially crafted file could implement a FatScript program and run
arbitrary code!

If reading JSON files from an unknown source, to be on the safe side, you should make your own safety-driven parser.

if you have written an alternative JSON parser in FatScript and would like to share the reference here, see contributing
document

Mixins

Instances of Storable are tied to files by a unique id. If not provided the default implementation will generate a random
UUID.

Example

_ <- fat.extra.json

Define a type that includes Storable (or EncryptedStorable)
User = (
 Storable # Include the Storable mixin

 # EncryptedStorable # alternative implementation
 # getEncryptionKey = (): Text -> '3ncryp1ptM3' # could get via KMS or config

 ## Argument slots
 name: Text
 email: Text

 # Setters return new immutable instance copy with updated field
 setName = (name: Text) -> $self + User * { name }
 setEmail = (email: Text) -> $self + User * { email }
)

Create a new user instance
newUser = User('Jane Doe', 'jane.doe@example.com')

Save the new user
newUser.save

Update a user's information and save the changes
updatedUser = newUser
 .setName('Jane Smith')
 .setEmail('jane.smith@example.com')
updatedUser.save

List all saved users
userIds = User.list

Load a user from the filesystem
userId = userIds(0) # ...or newUser.id
loadedUser = User.load(userId)

Delete user's data from the filesystem
loadedUser.erase # ...or User.erase(userId)

See also

Extra package

clbr://internal.invalid/CONTRIBUTING.md

Logger

84

Logger

Logger
Logging support

from simple console logging to file-based logging

Import

_ <- fat.extra.Logger

console library, color library, file library, time library, sdk library, and type library are automatically imported with this
import

Logger Type

Logger provides customizable logging capabilities with various levels and formats.

Properties

level: Text (default 'debug') - Logging level
showTime: Boolean (default true) - Flag to display timestamps

valid levels: 'debug', 'info', 'warn', 'error'

Prototype members

Name Signature Brief
setLevel (level: Text) Sets the logging level
setShowTime (showTime: Boolean) Toggles timestamp display in logs
asMessage (level: Text, args: Scope): Text Formats log messages (can be overridden)
log (msg: Any, fg: Number) Outputs messages (can be overridden)

Logging Functions

debug(_1, _2, _3, _4, _5): Logs a debug message
info(_1, _2, _3, _4, _5): Logs an info message
warn(_1, _2, _3, _4, _5): Logs a warning message
error(_1, _2, _3, _4, _5): Logs an error message

Subtypes

BoringLogger

Inherits from Logger
Overrides log to output plain text without color

FileLogger

Inherits from Logger
Additional Properties:

logfile: Text (default 'log.txt') - file for logging
Overrides log to append messages to a file

Usage Example

_ <- fat.extra.Logger

Create an instance with custom settings

Logger

85

myLogger = Logger(level = 'info', showTime = false)

Log an information message
myLogger.info('This is an informational message.')

Create a FileLogger to log messages to a file
fileLogger = FileLogger('myLog.txt')
fileLogger.info('Logged to file.')

mathex

86

mathex

mathex
Extended mathematical library

Import

math <- fat.extra.mathex

Recommendation

Import this library instead of fat.math, like math <- fat.extra.mathex, as it includes the other math functions
automatically.

Methods

Name Signature Brief
fact (x: Number): Number Return the factorial of x
logN (x: Number, base: Number): Number Return logarithm of x with specified base
exp (x: Number): Number Return e raised to the power of x
tan (x: Number): Number Return the tangent of x
sinh (x: Number): Number Return the hyperbolic sine of x
cosh (x: Number): Number Return the hyperbolic cosine of x
tanh (x: Number): Number Return the hyperbolic tangent of x
radToDeg (r: Number): Number Convert radians to degrees
degToRad (d: Number): Number Convert degrees to radians
mean (v: List/Number): Number Return the mean of a vector
median (v: List/Number): Number Return the median of a vector
sigma (v: List/Number): Number Return the standard deviation of a vector
variance (v: List/Number): Number Return the variance of a vector
sigmoid (x: Number): Number Return the sigmoid of x
relu (x: Number): Number Return the ReLU of x
round (x: Number): Number Return the nearest integer to x

Example

math <- fat.extra.mathex # named import
math.fact(5) # yields 120

See also

Math library
Extra package

Memo

87

Memo

Memo
Generic memoization utility class

Import

_ <- fat.extra.Memo

Constructor

Name Signature Brief
Memo (method: Method) Create a Memo instance for a method

Prototype members

Name Signature Brief
asMethod (): Method Return a curried version of Memo
call (arg: Any): Any Memoized call; cache and return results

Example

Memo is useful for optimizing functions by caching results. It stores the outcome of function calls and returns the cached result
when the same inputs occur again.

_ <- fat.extra.Memo

fib = (n: Number) -> {
 n <= 2 => 1
 _ => quickFib(n - 1) + quickFib(n - 2)
}

memoInstance = Memo(fib)
quickFib = memoInstance.asMethod

quickFib(50) # 12586269025

You can now call quickFib as if you were calling fib, but with cached results for previously computed inputs.

caveat: may cause memory allocation build-up

regex

88

regex

regex
Regular expression common patterns

Import

_ <- fat.extra.regex

Constants

alphaOnly
alphaNum
digitsOnly
emailAddress
httpUrl
ipAddress
isbnCode
numericValue

Usage Notes

Here are some examples of how to match text against the regular expressions provided by this library using the match method
of the Text prototype:

_ <- fat.extra.regex

"abc".match(alphaOnly) # output: true

"abc123".match(alphaNum) # output: true

"123".match(digitsOnly) # output: true

"johndoe@example.com".match(emailAddress) # output: true

"https://www.example.com/page?query=param".match(httpUrl) # output: true

"192.168.0.1".match(ipAddress) # output: true

"1-56619-909-3".match(isbnCode) # output: true

"3.14159e-5".match(numericValue) # output: true

Note that regular expressions may require modifications based on specific use cases or requirements. For example, you may
need to modify the httpUrl regular expression to match URLs that include a port number. Be sure to test your own input data
to make sure they are working as expected.

At the moment, FatScript's regex support is limited to matching only. You cannot use regular expressions for find and replace
operations.

Technical details

Regular expressions can be very powerful tools, but they can also be complex and difficult to get right.

FatScript implements the POSIX regex extended dialect, which is the same dialect used by grep. Under the hood, FatScript
uses the regexec function to perform regular expression matching.

Here is the exact implementation of regex provided by this library that may serve as inspiration to your own writing:

alphaOnly: match one or more alphabet characters only
^[[:alpha:]]+$

https://en.wikibooks.org/wiki/Regular_Expressions/POSIX-Extended_Regular_Expressions
https://linux.die.net/man/3/regexec

regex

89

alphaNum: match one or more alphabet and digit characters
^[[:alnum:]]+$

digitsOnly: match one or more digit characters only
^[[:digit:]]+$

emailAddress: matches a valid email address, with one or more alphanumeric
characters, dots, underscores, plus signs, or hyphens before the @ symbol,
and one or more alphanumeric characters, dots, or hyphens after the @ symbol
followed by a top-level domain of two to four letters
^[[:alnum:]_.+-]+@[[:alnum:]_.-]+\.[[:alpha:].]{2,4}$

httpUrl: matches a valid http or https URL, the domain name (one or more
alphanumeric characters followed by a dot), and the path (zero or more characters
including alphanumeric characters, dots, hyphens, question marks, equal signs,
ampersands, percent signs, or pound signs)
^(http|https):\/\/([[:alnum:]]+\.)+[[:alpha:]]{2,6}([\/[:alnum:]\.\-\?\=\&\%#]+)?$

ipAddress: matches a valid IP address in dotted-quad notation, with four groups
of one to three digits separated by periods
^([[:digit:]]{1,3}\.){3}[[:digit:]]{1,3}$

isbnCode: matches an ISBN that is either 10 or 13 digits long, with the last digit
being either a digit from 0-9 or the letter "X" to represent 10, allowing for
hyphens
or spaces to be used as separators between groups of digits
^[0-9]{1,5}[-]?[0-9]{1,7}[-]?([0-9]{1,6}[-]?[0-9]|[0-9][-]?[0-9]{3,5})[-]?[0-
9X]$

numericValue: matches a numeric value, including an optional negative sign at the
beginning, one or more digits before an optional decimal part (a period followed by
one or more digits), and an optional exponential part (letter 'e' followed by an
optional sign and one or more digits)
^-?[[:digit:]]+(\.[[:digit:]]+)?(e[+-]?[[:digit:]]+)?$

When defining regular expressions in FatScript, prefer to use raw texts and remember to escape backslashes as needed,
ensuring that the regular expressions are interpreted correctly.

See also

Extra package

Sound

90

Sound

Sound
Sound playback interface

Wrapper for command-line audio players using fork and kill.

Import

_ <- fat.extra.Sound

Constructor

The Sound constructor takes three arguments:

path: the filepath of your audio file.
duration (optional): the cool off time (in milliseconds) to accept to play again the file, usually you want to set this to
the exact duration of your audio.
player (optional): the default player used is aplay (common Linux audio utility, only supports wav files), but you
could use ffplay to play mp3, for example, defining ffplay = ['ffplay', '-nodisp', '-
autoexit', '-loglevel', 'quiet'], then providing it as argument for your sound instance. In this case
the package ffmpeg needs to be installed on the system.

Prototype members

Name Signature Brief
play (): Void Start player, if not already playing
stop (): Void Stop player, if still playing

state of "still playing" is inferred from the duration parameter

Example

_ <- fat.extra.Sound
time <- fat.time

applause = Sound('applause.wav', 5000);
applause.play
time.wait(5000)

note that Sound spawns a child process to play the audio, so it is asynchronous

util

91

util

util
Other random utilities

Import

_ <- fat.extra.util

Constants

regex, named import of regex library

Methods

Name Signature Brief
inferType (x: Text): Any Convert text to boolean, number or keep as text
fillWith (fill: Text, n: Number): Text Create text with n of fill elements
padRight (x: Text, fill: Text, n: Number): Text Add up to n of fill elements to the right-side of x
padLeft (x: Text, fill: Text, n: Number): Text Add up to n of fill elements to the left-side of x

Usage Notes

text padding

Methods for text formatting/padding purposes, use like:

padRight('Label', ' ', 10) # Text: 'Label '
padLeft('45', '0', 6) # Text: '000045'

if size of text is bigger than n, no transformation is performed

See also

Csv library
Extra package

xml

92

xml

xml
Simplified XML parser and generator

Import

_ <- fat.extra.xml

types package is automatically imported with this import

Variables

These settings can be adjusted to configure the behavior of the processing functions:

showParseWarnings, default is true - set to false to suppress warnings during parsing

Methods

Name Signature Brief
toXml (node: Any, wrap: Text = ø): Text Generates xml from native types
fromXml (text: Text): Any Parses xml into native types

Usage

toXml

Sample code:

data = {
 bookstore: [
 { book: { title: 'Book 1', author: 'Author 1' } }
]
}

xmlString = toXml(data)
xmlString will be the xml representation of the data

toXml generates xml string from FatScript data structures

fromXml

Sample code:

_ <- fat.extra.xml

xmlData = '<bookstore><book><title>Book 1</title><author>Author 1</author></book>
</bookstore>'

parsedData = fromXml(xmlData)
parsedData will be a Scope containing the parsed xml data

fromXml does not support attributes or self-closing tags and will show warnings if showParseWarnings is set to
true

lists are automatically inferred when multiple sibling items are present, which might lead to inconsistent data structures in
cases where an element is expected to be a list but occasionally contains only a single item

See also

Extra package

Embedded commands

93

Embedded commands

Embedded commands
Embedded commands are FatScript's low-level functions that can be invoked with keywords preceded by a dollar sign $. These
commands are always available, implemented as compiled code, and require no imports.

Unlike methods, they take no explicit arguments, but may read from specific entry names in the current scope, or even from the
interpreter's internal state.

Handy ones

Here a are some embedded commands that could be useful to know:

$debug toggles interpreter debug logs
$exit exits program with provided code
$keepDotFry keeps the config (.fryrc) in scope after startup
$result toggles result printing at the end of execution
$root provides a reference to global scope
$self provides a self reference to method/instance scope
$bytesUsage returns total of bytes allocated at the moment
$nodesUsage returns total of nodes allocated at the moment
$isMain checks if code is executing as main or module

You can call those directly on your code, like:

$exit # terminates the program

in order to use other embedded commands you mau have to study the C implementation of fry, as the complete list is not
documented, refer to embedded.c file

Libs under the hood

Standard libraries wrap embedded calls into methods, providing a more ergonomic interface. You don't need to create an
execution scope or load arguments into that scope before delegating execution to them.

For example, here's how you can use the floor method from math lib:

_ <- fat.math
floor(2.53)

This method is implemented as:

floor = (x: Number): Number -> $floor

Under the hood, the floor method creates an execution scope and loads an argument as x into it. The method then delegates
execution to the $floor embedded command, which reads the value of x from the current scope and returns the floor of that
number.

You can achieve the same outcome as above method by doing the following:

x = 2.53
$floor # reads value of x from current scope

Hacking

You can see which embedded command a library method is calling by looking into the library's implementation via the
readLib method from the sdk lib. Technically, there is nothing preventing you from calling embedded commands directly.

For example, you could terminate your program by calling $exit directly, which will exit with code 0 (default) or, if a
numeric entry named code exists in the current scope, the value of that entry will be used as the exit code. However, it would
be more elegant to import the fat.system library and call the exit method with the desired exit code:

https://gitlab.com/fatscript/fry/-/blob/main/src/sdk/embedded.c

Embedded commands

94

sys <- fat.system
sys.exit(0) # exits with code 0

This approach makes your code more readable and less prone to errors, and it also provides a better separation of concerns.

It's important to keep in mind that embedded commands are black boxes and not intended for writing common FatScript code.
In most cases, you would need to read the underlying C implementation to better grasp what a command is actually doing.

While it's possible to use embedded commands to gain additional runtime performance by avoiding imports and method calls,
this is not recommended due to the loss of code readability. In general, it's better to use the standard libraries and follow best
practices for writing clear, maintainable code.

https://gitlab.com/fatscript/fry/-/tree/main/src/libs

	Introduction
	General overview
	Setup
	Options
	Bundling
	Tooling

	Syntax
	Formatting
	Imports
	Entries
	Types
	Any
	Void
	Boolean
	Number
	Text
	Method
	List
	Scope
	Error

	Flow control
	Loops

	Libraries
	async
	color
	console
	curses
	failure
	file
	http
	math
	sdk
	system
	time
	zCode
	type._
	Void
	Boolean
	Number
	Text
	Method
	List
	Scope
	Error

	extra._
	csv
	Date
	Duration
	elapsed
	HashMap
	hex
	json
	Logger
	mathex
	Memo
	regex
	Sound
	util
	xml

	Embedded commands

